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Abstract
Thispapermeasures theexposureof industries andoccupations toabroad set of emerging
digital technologies and estimates their impact on European employment. Using a novel
approach that leverages sentence transformers, we calculate exposure scoresbasedon the
semantic similarity between patents and international standard classifications, creating
the open–access ‘TechXposure’ database. Through a shift–share design, we instrument
regional exposure to estimate the effects of these technologies on employment across Eu-
ropean regions. We find a net positive impact, with growth in low- and high-skilled em-
ployment at the expense of middle-skilled jobs, suggesting ongoing job polarization. At
the technology level, we observe significant heterogeneity: robots and machine learning
negatively impact employment (except for high-skilledworkers), while workflowmanage-
ment and information processing systems have positive effects. Our results suggest that
focusing narrowly on specific technologies like AI and robots may overlook broader posi-
tive employment impacts stemming from complementarities among diverse digital tech-
nologies.
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1 Introduction
The past decade has witnessed rapid advancements in digital automation technologies, such
asartificial intelligence, augmentedandvirtual reality, electric vehicles, self-drivingcars, drones,
mobile robots, the Internet ofThings, 3Dprinting, andblockchain. While substantial evidence
exists on the labor market impact of more established digital technologies, such as ICT and
industrial robots,¹ little is known about the employment impact of this diverse array of new
digital technologies.

This gap in the literature results from the limited number of available metrics measuring
workers’ and industries’ exposure to emergingdigital technologies, which stems from the chal-
lenge of identifying the relevance of a technology to an occupation or industry. Prior work,
whichprovidemeasures ofworkers’ and industries’ exposure tomore recent technology, focus
either on specific technologies such as some applications of artificial intelligence, or provides
a catch-all of automation technologies,² and only focuses on the US context.³

This paper measures the exposure of industries and occupations to a broad set of digital
technologies that emerged over the past decade and estimates their impacts on regional em-
ployment in Europe. Using state-of-the-art Natural Language Processing (NLP) tools, such as
sentence transformers, we introduce an innovative methodology to measure the exposure of
industries and occupations to emerging digital technologies. Our approach, based on seman-
tic similarity between patents and industry/occupation descriptions (obtained from interna-
tional standard classification systems), is scalable and reproducible for any type of technology,
any period, and any classification system.

The outcome of this methodology is the ‘TechXposure’ database, a pioneering resource
that we have made publicly available. This database stands out as the first of its kind, offering
an unprecedented level of granularity in measuring the exposure of NACE industries (up to
the 3-digit level) and ISCO-08 occupations (up to the 4-digit level) to a comprehensive and
extensive set of technologies.

Using an IV shift-share approach, we estimate the employment impact of a broad set of
¹See, for instance, Autor et al. (1998), Autor et al. (2003), Autor et al. (2006), Goos and Manning (2007), Goos

et al. (2009, 2014), Michaels et al. (2014), Akerman et al. (2015) for the labor market consequences of techno-
logical change related to Information and Communication Technologies (ICT); and Graetz and Michaels (2018),
Acemoglu and Restrepo (2020), Vries et al. (2020), Aksoy et al. (2021), Dauth et al. (2021), Aghion et al. (2023),
Adachi et al. (2024), Bonfiglioli et al. (2024) for the labor market effects of industrial automation and industrial
robots.

²SeeFeltenet al. (2018, 2021),Webb (2019), Alekseevaet al. (2021), Acemogluet al. (2022b) for studies focusing
on AI exposure metrics; Kogan et al. (2019, 2021), Mann and Püttmann (2023), Autor et al. (2024) for studies
measuring exposure to a catch-all of technologies.

³A notable exception is Albanesi et al. (2023) who examine the relationship between labor markets and expo-
sure to AI and software in 16 European countries, combining both Felten et al. (2018) andWebb (2019) US-based
exposure metrics.
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digital technologies that emerged over the past decade across several demographic groups.
We leverage industry exposures from our database and the baseline employment shares of
these industries in each European region to provide valuable insights into the labor market
consequences of regional exposure to these technologies.

We start our analysis by grouping patents into technologies based on semantic similarity
in their titles. We use the sample of patents identified as core emerging digital technologies in
Chaturvedi et al. (2023). This sample includes the digital innovations filed between 2012 and
2021 that are central to the development of digital technologies and most likely to be used
in the production of goods and services during this decade. We convert the text of patent ti-
tles into vector representations, or embeddings,⁴ using the pre-trained sentence transformer
model all-mpnet-base-v2 (Song et al. 2020).⁵ We apply k-means clustering on these embed-
dings, resulting in the identification of 40 emerging digital technologies, each defined as a
group of patents.

We compute the exposure of industries and occupations to these technologies based on
the semantic connection between patents and the descriptions of industries and occupations.
For each industry-patent and occupation-patent combination, we calculate the cosine simi-
larity score, which reflects the degree of similarity between the documents. To enhance the
correspondence quality, we introduce a filtering procedure that retains only themost relevant
pairs. Once filtered, we aggregate the cosine similarity scores from individual patents to the
technologies under which they were clustered by taking the citation-weighted sum.

Our exposure metric reflects how relevant a specific technology is to an industry or oc-
cupation. For industries, relevance is determined by the integration of technology into the
production process and/or its role in enhancing industry output. For occupations, relevance
measures the importance of a technology in performing tasks and functions. These exposure
scores serve as proxies for adoption, indicating the contextual relevance of each technology
across industries and occupations. Yet, our exposure scores are neutral regarding the nature
of the relationship between technology and workers in a given industry or occupation, mean-
ing that they do not assume ex-ante whether technology and labor are complements or sub-
stitutes in production. In contrast, our estimates in the second part of the paper clarify this

⁴Text embedding is a Natural Language Processing (NLP) technique used to transform text (words, sentences,
documents) into a numerical representation, i.e., high-dimensional numerical vectors, commonly referred to
as embeddings. See Gentzkow et al. (2019) for a comprehensive review of NLP applications in the economic
literature.

⁵A sentence transformer is a specific architecture of a deep neural network. The features of this architecture
enable the model to capture the contextual significance of words in a text and leverage the ensemble effect to
produce embeddings. The sentence transformer model all-mpnet-base-v2 is fine-tuned on over a billion sen-
tence or paragraph pairs from academic papers, Wikipedia, and Stack Exchange, among others, and has shown
state-of-the-art results on sentence similarity tasks (Song et al. 2020).
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relationship.
We estimate the causal effect of these digital technologies on European regional employ-

ment over the period 2012–2019. Our analysis proceeds in two steps. First, we assess the over-
all impact of emerging digital technologies on the regional employment-to-population ratio
from 2012 to 2019 across several demographic groups. The sample covers 320NUTS-2 regions
in 32 European countries. Second, we conduct a detailed analysis to disentangle the effects
of specific technologies, such as robotic and data-intensive technologies (including several AI
applications), conditional on exposure to other emerging digital technologies.

To address endogeneity issues, we instrument the regional exposure to these technologies
with a shift-share design, in which the industry exposure scores over the period are the shocks
and thebaseline employment shares of these industries are the shares. Our identification strat-
egy relies on the quasi-random assignment of shocks, allowing employment shares to be en-
dogenous. We argue that the development of emerging digital technologies is predominantly
a global phenomenon, independent of local employment changes in Europe. In addition, we
exclude patents originating from Europe. Thus, our industry exposure scores (i.e., the shocks)
are assumed to be quasi-exogenous to regional employment changes in Europe. We also as-
sume that regions more exposed to emerging digital technologies are not disproportionately
affected by other labor market shocks or trends. Our approach leverages the equivalence pro-
posed by Borusyak et al. (2021), and we apply the AKM0 inference method following Adão
et al. (2019).

Our work reveals several new findings. First, we document which industries and occupa-
tions are the most exposed to emerging digital technologies. For occupations, we find that
clerical support workers, plant/machine operators, and assemblers are the most exposed to
emergingdigital technologies, closely followedbyhigh-payingandqualifiedoccupations such
as managers, professionals, technicians, and associate professionals. However, the exposure
of this latter group of high-paying occupations tends to be driven by the exposure of recur-
rent tasks rather than specialized tasks. Additionally, we observe thatmanual occupations are
more exposed to tangible technology families, such as 3D Printing, Embedded Systems, and
Smart Mobility, while cognitive occupations are more exposed to intangible technology fam-
ilies, such as Computer Vision, E-Commerce, Payment Systems, HealthTech, and Digital Ser-
vices. We find a similar divide for industries, with agriculture, manufacturing industries, and
services operating physical infrastructures, such as transportation and storage, being more
exposed to tangible technologies as compared to other services which are more exposed to
intangible technologies.

Second, the overall impact of emerging digital technologies on regional employment is
positive; however,weobservea jobpolarizationpattern. Wefind that aone-standard-deviation
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increase in regional exposure leads to a 1.03 percentage point (pp.) change, corresponding to
2.05%, in the employment-to-population ratio from 2012 to 2019. When decomposing this ef-
fect into skill groups, proxied by education levels, we observe that only low- and high-skilled
employment increases due to emerging digital technologies, with respective changes of 0.72
pp. (+6.01%) and 0.74 pp. (+4.92%) in their employment-to-population ratios, while middle-
skilled employment decreases by 0.41 pp. (−1.78%). Additionally, we find that the positive
effects are relatively stronger for female and young (aged 15–24) workers compared to male
and mature (aged 25–64) workers.

Third, we find significant heterogeneity in the impact of individual technologies. Greater
regional exposure to industrial automation (including industrial robots), intelligent logistics
(including mobile robots), and machine learning increases the employment of high-skilled
workers while decreasing it for both low- and middle-skilled workers. Conversely, some AI
applications related to information processing and workflow management display positive
impacts on total employment, driven by the employment of low-skilled workers for informa-
tion processing and shared across the entire skill distribution for workflow management.

Our work contributes to the literature on the labor market consequences of technological
change in several ways. First, while our results align with existing literature on the negative
employment impact of certain automation technologies (e.g., industrial robots and AI), they
also suggest that a narrow focus on these technologies may overlook the positive impacts of
other emerging digital technologies on employment. Consistent with our results, Mann and
Püttmann (2023) and Autor et al. (2024)—who use broader definitions of (automation) tech-
nology compared toAcemoglu andRestrepo (2020), which focus on industrial robots, orWebb
(2019), which focuses on AI and software—also find overall positive employment effects inUS
labor markets and occupation-industry cells. Our work underscores the crucial role of com-
plementarities among these technologies in determining their employment effects.

Second, this paper uniquely addresses a gap in this literature regarding exposure metrics.
While most existing metrics concentrate on US classifications and specific technologies,⁶ our
work is the first to provide detailed exposure scores based on international standard classifi-
cations, specifically NACE Rev. 2 and ISCO-08, with high granularity across a broad range of
digital technologies. This contribution enhances the applicability of exposuremetrics beyond
the US context and prominent technologies, offering a broader basis for future research. Fur-
thermore, our scores drawonglobal patent data, reflecting technological advancesworldwide,

⁶See Jurkat et al. (2022) for the international distributionof industrial robots by country and industry, Frey and
Osborne (2017) for occupational exposure to computerization, Webb (2019) and Felten et al. (2021) for exposure
to AI, and Felten et al. (2023) for exposure to recent advances in AI language modeling capabilities, including
Large Language Models (LLM).

4



not limited to the US and Europe.
Third, we contribute methodologically by introducing a scalable approach that leverages

advanced NLP techniques with sentence transformers to estimate exposure. Unlike tradi-
tional methods that rely on keywords (i.e., tokens) to match innovations with occupations
and industries,⁷ our methodology bypasses this requirement by leveraging semantic and con-
textual similarity, requiring only a relevant patent set. Moreover, our approach innovatively
uses patents by clustering thembased on semantic distance to define technology groups. This
method identifies a broad range of digital technologies—not limited to AI or robotics—and al-
lows for more precise and interpretable categorization.

The paper is organized as follows. Section 2 outlines our methodology for deriving our
set of emerging digital technologies from patent data. Section 3 introduces our state-of-the-
art NLP-based method for calculating industry and occupation exposure scores to these tech-
nologies. Section 4 provides descriptive statistics regarding the exposure of industries and
occupations to emerging digital technologies. Section 5 estimates the causal impact of these
technologies on regional employment, using an IV shift-share approach. Section 6 concludes.

2 Emerging Digital Technologies
In this section, we define our set of emerging digital technologies, with each technology rep-
resented as a cluster of patents from the Derwent Innovation Index (DII) database.⁸ For sim-
plicity, we use the term ’patent’ instead of ’patent family’ to refer to a single invention across
various patent offices. We first describe the components of patent texts and the characteris-
tics of our sample, then explain our methodology for clustering patents based on semantic
similarity to identify our emerging digital technologies.

We use a set 𝒫 of 190,714 Derwent patents filed between 2012 and 2021.⁹ This patent set,
constructed byChaturvedi et al. (2023), captures core emerging digital technologies and appli-
cations since 2011. Appendix A.1 provides further details on the patent corpus construction.

⁷For example, Kelly et al. (2021) and Kogan et al. (2021) use a token-based TF-IDF approach to estimate oc-
cupational exposure from breakthrough innovations, while Dechezleprêtre et al. (2023) measure automation
innovation by analyzing keyword frequencies in patents, and Mann and Püttmann (2023) categorize patents as
automation-related using tokens.

⁸DII covers over 120 million global patent publications from 59 worldwide patent-issuing authorities and as-
signs each invention to a unique patent family. These families, represented by standardized English titles and
abstracts, are structured by experts into themed blocks (e.g., novelty, use, claims) to streamline searching. Along-
side CPC and IPC classifications, DII employs Derwent Manual Codes, a custom hierarchical indexing system
reflecting technical and application content for improved patent retrieval.

⁹Each patent document details the invention and its distinctions fromprior inventions. Information includes
a title, abstract, and metadata, such as applicants, inventors, filing year, authority, citations, and technical clas-
sifications (e.g., International Patent Classification or IPC). The abstract is segmented into labeled topical blocks
like novelty, use, and claims.
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We encode the semantic content of each patent title into a numerical representation, or
embedding, using sentence transformers.¹⁰ The Derwent Database provides titles (curated by
experts) and abstracts as the main textual data for each patent. Patent titles are structured in
two parts: the first part (𝑝1 ∈ 𝑝) provides a concise description of the technology, while the
second part (𝑝2 ∈ 𝑝) explains how the technology functions. These two parts are separated by
the first comma–verb combination.¹¹ This structure achieves a balanced representation of
the invention, maintaining both generality and specificity. Incorporating additional abstract
content, such as independent claims or novelty, would increase text lengthwithout enhancing
precision, potentially reducing the signal-to-noise ratio.

For semanticmatching, this concise representationof an invention—combining its essence
and function—can be paralleled with industrial and occupational descriptions. Specifically,
we represent an industry or occupationwith sentences that follow the same structure: essence
(from the industry/occupation title) combined with function (a task for an occupation or an
activity/process for an industry). Section 3 details the treatment applied to these texts. Align-
ing the structure of patent titleswith industrial and occupational texts enhances thematching
between patents and these taxonomies. This is further facilitated by term standardization and
text harmonization in the DII, which conveys technical details clearly and accessibly rather
than with excessive jargon. Additionally, unlike abstracts, titles are consistently available for
all patents.

We provide three examples of patent titles present in our sample:

1. Method for targeting television advertisement based on profile linked to online device,
involves selecting television advertisement to be directed to set-top box based on profile
information pertaining to user or online activity. (Patent ID 2013B87254, 2013)

2. Vehicle intelligent logistics control device, has GPS locating module for obtaining posi-
tion information of transport vehicle throughmain control chip, RFID reader for reading
RFID tag information, and 4G module connected with server. (Patent ID 201713859U,
2017)

3. System for recognizing training speech, has process or which is configured to increment
counter associated with word sequences, and train language model of automatic tran-

¹⁰Previous studies primarily use a bag-of-words (BoW) approach, relying on token frequencies and weights
(Kogan et al. 2019, Webb 2019, Arts et al. 2021, Dechezleprêtre et al. 2023, Mann and Püttmann 2023). Sentence
transformers perform better than the BoW approach as they capture contextual relationships between words,
allowing for a deeper understanding of semantic meaning. While BoW models rely solely on word frequency
and lack context, sentence transformers generate embeddings that represent the overall meaning of a sentence,
preservingword order and context. This results inmore accurate and nuanced representations of patent content,
particularly for identifying similarities and clustering technologies.

¹¹Using Part-of-Speech (POS) tagging, we identify this pattern in 87.3%of our sample, commonly appearing as
‘, has’, ‘, includes’, ‘, involves’, and ‘, comprises’. For the remaining patents, titles are split at the nearest midpoint.
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scription system using word sequences and counter. (Patent ID 202048118D, 2020)

For each patent title in our sample 𝒫, we obtain its embedding 𝐸𝑚𝑏𝑝, a 768-dimensional
numerical representationof text, using thepre-trainedsentence transformermodel all-mpnet-
base-v2 (Song et al. 2020). Sentence transformers encode word meaning in relation to sur-
roundingcontext, offeringanadvantageoverbag-of-wordsmodels that treat text asunordered
words. The all-mpnet-base-v2 model is particularly well-suited for sentence similarity and
clustering tasks.¹²

We then cluster the embeddings using the k-means algorithm to obtain 40 clusters, which
we designate as our set of emerging digital technologies 𝑘 ∈ 𝒦. Initially, we compute parti-
tions ranging from5 to 100 clusters and record eachDavies-Bouldin Index (DBI) score (Davies
and Bouldin 1979). The optimal range, based on the lowest DBI scores, lies between 30 and
45 clusters, indicating high within-cluster and low between-cluster similarity. We further ana-
lyze this rangeusing themost representative phrases per cluster via c-TF-IDF.¹³Wefind that 40
clusters are optimal for our analysis, as they alignwell with commonly discussed technologies
in digital and automation literature (Acemoglu and Restrepo 2019; Zolas et al. 2021;Martinelli
et al. 2021; Acemoglu et al. 2022a).

Table 1 presents our set of emerging digital technologies grouped by technology families.
Short descriptions of each technology are provided in Tables A.1 to A.3 in Appendix A.2. The
groupingof these40 technologies into9 families is basedoncorrelations in their co-occurrence
within occupations (discussed further in the next section). Each family includes technologies
with highly correlated occupational semantic links; see Appendix A.6 for a detailed discussion.
Figure A.2 in the appendix shows the distribution of patents across the emerging digital tech-
nologies.

3 Semantic–based Exposure
In this section, we present the methodology for calculating the exposure scores of industries
and occupations to emerging digital technologies. First, we calculate the cosine similarity
scores between industries/occupations and patents using textual data, filtering for relevant

¹²We select all-mpnet-base-v2 due to its high performance in Semantic Textual Similarity (STS) benchmarks
(see https://huggingface.co/spaces/mteb/leaderboard), computational efficiency, open-source availability, and
ease of use via the SentenceTransformers library. Its specialization in text similarity arises from the contrastive
loss function used in training, which adjusts model weights based on sentence pairs or triplets, pulling embed-
dings closer for similar texts and pushing them apart for dissimilar ones. The model is trained on 1.17 billion
sentence pairs from sources like WikiAnswers, Reddit, Stack Exchange, and Semantic Scholar.

¹³A modified term frequency-inverse document frequency (TF-IDF) measure, which identifies terms most
relevant to clusters rather than individual documents. TF-IDF highlights terms that frequently appear and are
unique to specific clusters within the corpus.
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Table 1: List of Emerging Digital Technologies

Family Emerging Digital Technology
F1 3D Printing 01 3D Printer Hardware

02 3D Printing
03 Additive Manufacturing

F2 Embedded Systems 04 Smart Agriculture & Water Management
05 Internet of Things (IoT)
06 Predictive Energy Management and Distribution
07 Industrial Automation & Robot Control
08 Remote Monitoring & Control Systems
09 Smart Home & Intelligent Household Control

F3 Smart Mobility 10 Intelligent Logistics
11 Autonomous Vehicles & UAVs
12 Parking and Vehicle Space Management
13 Vehicle Telematics & Electric Vehicle Management
14 Passenger Transportation

F4 Food Services 15 Food Ordering & Vending Systems
F5 E-Commerce 16 Digital Advertising

17 Electronic Trading and Auctions
18 Online Shopping Platforms
19 E-Coupons & Promotion Management

F6 Payment Systems 20 Electronic Payments & Financial Transactions
21 Mobile Payments
22 Gaming & Wagering Systems

F7 Digital Services 23 Digital Authentication
24 E-Learning
25 Location-Based Services & Tracking
26 Voice Communication
27 Electronic Messaging
28 Workflow Management
29 Cloud Storage & Data Security
30 Information Processing
31 Cloud Computing
32 Recommender Systems
33 Social Networking & Media Platforms
34 Digital Media Content

F8 Computer Vision 35 Augmented and Virtual Reality (AR/VR)
36 Machine Learning & Neural Networks
37 Medical Imaging & Image Processing

F9 HealthTech 38 Health Monitoring
39 Medical Information
40 E-Healthcare

Notes: This table lists the 40 emerging digital technologies along with their respective emerging technology fami-
lies. Emerging digital technologies are obtained by clustering the embeddings using the k–means algorithm, where
the embeddings are derived with the sentence transformer all-mpnet-base-v2. For a short description of these tech-
nologies, refer to Tables A.1 to A.3 in Appendix A.2. Technologies are grouped by families, where a family comprises
technologies whose occupation structure of semantic links is highly correlated.
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pairs. We then aggregate these similarity scores at the technology level to derive semantic-
based exposure scores.

Exposure scores indicate the relevance of each technology to a given industry or occupa-
tion, whichwe later use as a proxy for adoption. For industries, relevance depends onwhether
a technology is integrated into the production process or constitutes an improved industry
output. For occupations, relevance reflects the importance of technology in performing tasks
and functions specific to that occupation.

3.1 Industry Cosine Similarity Scores

Industry Descriptions. We select the 3-digit NACE Rev.2 classification as the most detailed
level for the textual description of industries, based on two primary considerations. First, this
approach enables us to incorporate titles and descriptions from the 4-digit level into the 3-
digit descriptions, thereby expanding the text corpus for matching. Second, industry subsets
within the same 3-digit category do not exhibit substantial differences in their connections to
patents, allowing for consolidation without significant information loss.

In Section 2, we discussed the patent title structure and argued that mirroring this struc-
ture in industry (and occupation) texts facilitatesmatching. Therefore, for each industry 𝑖 ∈ ℐ,
we split the descriptions (both 3-digit and nested 4-digit) into individual sentences and con-
catenate each with its title. We represent these composite sentences as 𝑠 ∈ 𝑆𝑖 ⊂ 𝒮ℐ, where
𝑆𝑖 is the set of sentences combining the title and a description for industry 𝑖. This yields 271
industries at the 3-digit level, each represented by an average of 11 composite sentences.

Embeddings. We generate embeddings for these composite sentences using the same pre-
trained sentence transformer as in Section 2, namely all-mpnet-base-v2 (Song et al. 2020). The
embedding of a composite sentence 𝑠 for an industry 𝑖 is denoted as 𝐸𝑚𝑏𝑠,𝑖.

CosineSimilarity. For eachpatent𝑝 ∈ 𝒫, we compute the cosine similarity betweenall com-
posite sentences 𝑠 ∈ 𝒮ℐ and both parts of the patent titles: 𝑝1 (describing the invention) and
𝑝2 (describing its function). Specifically, the cosine similarities are:

𝐶𝑝1
𝑠,𝑖 =

𝐸𝑚𝑏𝑠,𝑖 ⋅𝐸𝑚𝑏𝑝1

||𝐸𝑚𝑏𝑠,𝑖|| ||𝐸𝑚𝑏𝑝1
|| , (1)

𝐶𝑝2
𝑠,𝑖 =

𝐸𝑚𝑏𝑠,𝑖 ⋅𝐸𝑚𝑏𝑝2

||𝐸𝑚𝑏𝑠,𝑖|| ||𝐸𝑚𝑏𝑝2
|| , (2)
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which quantify the semantic relationship between 𝑝1, respectively 𝑝2, and 𝑠. However, simi-
laritymay reflect different nuances ofmeaning, such as application, technical domain, or spe-
cific functions, whether central or ancillary. This is encapsulated into a scalar value, which
approximates the degree of similarity between industry aspects (as described in the NACE 4-
digit classification) and aspects of the invention (as described in the patent).

To reduce the noise and capture themost relevant similarity between an invention and an
industry, we retain the composite sentence 𝑠 with the highest cosine similarity for each (𝑖,𝑝1)
and (𝑖,𝑝2) combination. Formally,

𝐶𝑝1
𝑖 ∶= max

𝑠∈𝑆𝑖
𝐶𝑝1

𝑠,𝑖, (3)

𝐶𝑝2
𝑖 ∶= max

𝑠∈𝑆𝑖
𝐶𝑝2

𝑠,𝑖, (4)

where𝐶𝑝1
𝑠,𝑖 and𝐶𝑝2

𝑠,𝑖 aredefinedbyEquations (1) and (2), respectively. These scalars summarize
the quality of the semantic correspondence between industry 𝑖 and the patent’s description
(𝑝1) or function (𝑝2).

Redundancy. To filter out irrelevant pairs, we incorporate redundancy in calculating cosine
similarity for industry–patent pairs (𝑖,𝑝). For each combination, we rank the sub-pairs (𝑖,𝑝1)
and (𝑖,𝑝2) separately by their cosine similarity scores, 𝐶𝑝1

𝑖 and 𝐶𝑝2
𝑖 . We then classify a pair

(𝑖,𝑝) as relevant (denoted as (𝑖,𝑝)⋆) if both sub-pairs rank within the top 10 in their respective
lists. This approach excludes pairs that do not achieve a top-10 rank for both components.¹⁴
Thus, we retain only those inventions where both the description and function are relevant to
the industry.

For each identified relevant pair, we calculate the harmonic mean of the cosine similarity
scores for both the invention’s description and its function. This yields the composite cosine
similarity score for industry–patent pairs (𝑖,𝑝)⋆ as follows:

𝐶𝑝
𝑖 = 2( 1

𝐶𝑝1
𝑖

+ 1
𝐶𝑝2

𝑖
)

−1
, (5)

where 𝐶𝑝1
𝑖 and 𝐶𝑝2

𝑖 are given by Equations (3) and (4), respectively. Thus, Equation (5) es-
tablishes a connection between an invention, identified in a single patent 𝑝 ∈ 𝒫, and a set
of relevant industries, where the innovation can enhance process, output, or organizational
aspects.

¹⁴Additionally, we manually exclude three very specific connections to improve our exposure scores; see Ap-
pendix A.3 for details.
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Table 2: Example of Redundancy Filtering of Industries for Targeted TV Advertising

Cosine Similarity
Code NACE Industry 𝐶𝑝1

𝑖 𝐶𝑝2
𝑖 𝐶𝑝

𝑖

60.2 Television programming and broadcasting activities 0.391 0.445 0.416
73.1 Advertising 0.458 0.373 0.411
73.2 Market research and public opinion polling 0.295 0.272 0.283
59.1 Motion picture, video and television programme activities 0.271 0.263 0.267
61.2 Wireless telecommunications activities 0.290 0.229 0.256
26.3 Manufacture of communication equipment 0.257 0.240 0.249
78.1 Activities of employment placement agencies 0.265
47.9 Retail trade not in stores, stalls or markets 0.263
56.3 Beverage serving activities 0.261
80.1 Private security activities 0.253
61.3 Satellite telecommunications activities 0.294
61.1 Wired telecommunications activities 0.237
97.0 Activities of households as employers of domestic personnel 0.231
58.1 Publishing of books, periodicals and other publishing activities 0.223

Notes: This table presents the redundancy filtering of industries for the Patent ID 2013B87254. It displays the cosine similarity of distinct
3-digit NACE Rev.2 industry descriptions with the patent description “Method for targeting television advertisement based on profile
linked to online device” (Column 3) and the function principle “selecting television advertisement to be directed to set-top box based
on profile information pertaining to the user or online activity” (Column 4). Industries are ranked according to Column 3 in decreasing
order. Cosine similarity scores in Columns 3 and 4 are displayed only for sub-pairs belonging to their respective top 10. Column 5 shows
the composite patent-industry cosine similarity score, which corresponds to the harmonic mean of Columns 3 and 4. Cosine similarity
scores in Column 5 are displayed only for pairs that rank simultaneously in both top 10.

Table 2 illustrates the redundancy principle using the first patent example from Section
2, which details a targeted TV advertising method based on user profile information. For this
patent, redundancyfilters out industries irrelevant to the innovation. Redundancyfiltering for
the other two patent examples from Section 2 is shown in Tables A.4 and A.5 in the appendix.

3.2 Occupation Cosine Similarity Scores

Occupation Descriptions. We select the 4-digit ISCO-08 level as the most detailed for the
textual description of occupations. Unlike industries, this level includes distinct occupations
that provide valuable insights for our analysis. Each ISCO-08 occupation corresponds to a
specific set of tasks, though some tasks may overlap across occupations.

For each occupation 𝑜 ∈ 𝒪, we consider two components of its description: the occupa-
tion title 𝑜1 and the task description 𝑜2. We split the task description into individual tasks
𝑠 ∈ 𝑆𝑜 ⊂ 𝒮𝒪, where 𝑆𝑜 represents the set of tasks for occupation 𝑜. This process yields 433
occupations at the 4-digit level, each represented by a title and an average of 7.5 tasks.
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Embeddings. As with industries, we generate embeddings using the same sentence trans-
former model. The embedding of the occupation title is denoted as 𝐸𝑚𝑏𝑜1

, and the embed-
ding of each task 𝑠 is represented as 𝐸𝑚𝑏𝑠,𝑜2

.

Cosine Similarity. For each patent 𝑝 ∈ 𝒫, we compute the cosine similarity between the full
patent title and both components describing occupations: the occupation title 𝑜1 and each
task 𝑜𝑠,2 separately. Specifically, the cosine similarities are:

𝐶𝑝
𝑜1

=
𝐸𝑚𝑏𝑜1

⋅𝐸𝑚𝑏𝑝
||𝐸𝑚𝑏𝑜1

|| ||𝐸𝑚𝑏𝑝|| , (6)

𝐶𝑝
𝑠,𝑜2

=
𝐸𝑚𝑏𝑠,𝑜2

⋅𝐸𝑚𝑏𝑝
||𝐸𝑚𝑏𝑠,𝑜2

|| ||𝐸𝑚𝑏𝑝|| , (7)

which reflect the semantic connection between 𝑜1 and 𝑝, as well as between 𝑠 and 𝑝.
For each (𝑜2,𝑝) combination, as with industries, we retain the taskwith the highest cosine

similarity score. Formally,
𝐶𝑝

𝑜2
∶= max

𝑠∈𝑆𝑜
𝐶𝑝

𝑠,𝑜2
, (8)

where 𝐶𝑝
𝑠,𝑜2

is the cosine similarity between patent 𝑝 and task 𝑠 given by Equation (7). No
aggregation is needed for 𝑜1 as each occupation has only one title. These scalars summarize
the quality of the semantic match between an occupation and a patent, either through the
occupation’s title or its associated tasks.

Redundancy. We apply the same methodology as for industries, designating occupation–
patent pairs (𝑜,𝑝) as relevant (denoted (𝑜,𝑝)⋆) if both sub-pairs (𝑜,𝑝)1 and (𝑜,𝑝)2 rank within
the top 10 of their respective lists. This way, we retain only inventions relevant to the occupa-
tion.¹⁵

For each relevant pair, we calculate the harmonic mean of both cosine similarity scores,
yielding the composite cosine similarity score for occupation–patent pairs (𝑜,𝑝)⋆ as follows:

𝐶𝑝
𝑜 = 2( 1

𝐶𝑝
𝑜1

+ 1
𝐶𝑝

𝑜2
)

−1
, (9)

where 𝐶𝑝
𝑜1

and 𝐶𝑝
𝑜2

are given by Equations (6) and (8), respectively. Equation (9) thus estab-
lishes a connection between an invention, identified in a single patent 𝑝 ∈ 𝒫, and a set of
relevant occupations, where the innovation can be used. Tables A.6 to A.8 in the appendix

¹⁵As with industries, we manually exclude three specific connections to improve our exposure scores; see Ap-
pendix A.3 for details.
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show redundancy filtering of occupations for our patent examples from Section 2.

3.3 Aggregation by Technology

We aggregate cosine similarity scores 𝐶𝑝
𝑖 and 𝐶𝑝

𝑜 from Equations (5) and (9) to the technology
level. To do this, we apply a weighting scheme based on the number of citations a patent
receives, as a proxy for its relevance and likelihood of use across industries and occupations.
Given the variation in patent impact, it is essential that their weights reflect this heterogeneity
(Hall et al. 2005, OECD 2009).

Weassignaweight to thecosine similarity scoreof each relevantpatent–industry/occupation
pair, proportional to the number of citations the patent has received relative to the total cita-
tions of all relevant patents associated with the same occupation/industry, technology, and
year.¹⁶ The weight for a relevant pair (𝑑,𝑝)⋆ is calculated as:

𝜔𝑝
𝑑 = 𝑚𝑝

∑𝑝∈𝒫𝑘
𝑑𝑡

𝑚𝑝
, (10)

where 𝑚𝑝 is the number of citations patent 𝑝 has received, 𝒫𝑘
𝑑𝑡 is the set of patents related to

emerging digital technology 𝑘, filed in year 𝑡, and relevant to industry/occupation 𝑑 = {𝑖,𝑜}.
We apply this weighting scheme to aggregate patent-level cosine similarity scores to the

technology level. The cosine similarity of a technology 𝑘 to an industry/occupation is then
calculated as:

𝐶𝑘
𝑑𝑡 = |𝒫𝑘

𝑑𝑡|× ∑
𝑝∈𝒫𝑘

𝑑𝑡

𝜔𝑝
𝑑𝐶𝑝

𝑑 , (11)

where 𝐶𝑝
𝑑 is the cosine similarity score of the pair (𝑑,𝑝) as defined in Equations (5) and (9),

𝜔𝑝
𝑑 is the weight from Equation (10), and |𝒫𝑘

𝑑𝑡| is the total number of patents associated with
industry/occupation–technology pair (𝑑,𝑘) for 𝑑 = {𝑖,𝑜} in year 𝑡. This yields the cosine sim-
ilarity score of industry/occupation 𝑑 with technology 𝑘 for year 𝑡.

Accounting for impact via patent citations does not significantly alter our exposure mea-
sures.¹⁷ This is because our exposuremeasure is basedon semantic similarity betweenpatents
and industries/occupations. The semantic content of patents within the same technology

¹⁶In our sample, 41% of patents have not received any citations. This includes 1,733 patents (0.91%) with an
indeterminate citation count, treated as zero, and 77,307 patents (40.54%) with no citations. Figure A.4 in the
appendix shows the distribution of these patents across technologies, and Figure A.3 shows the overall citation
distribution.

¹⁷Aggregating without citation weighting yields yearly cosine similarity scores very similar to those obtained
withweighting. Figure A.5 in the appendix shows the correlationbetweenweighted andunweighted scores. Pear-
son correlations between the two methods are approximately 0.99 for both industries and occupations, and the
Spearman rank correlation is around 0.89.
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does not vary significantly between more and less impactful patents, leading to minimal dif-
ferences between weighted and unweighted exposure measures.

We then aggregate cosine similarity scores across all years to obtain a cumulativemeasure
for the period 2012–2021, as follows:

𝐶𝑘
𝑑 = ∑

𝑡
𝐶𝑘

𝑑𝑡, with 𝑑 = {𝑖,𝑜}, (12)

where 𝐶𝑘
𝑑𝑡 is defined Equation (11).

3.4 Exposure Scores

To obtain our final measure of exposure for 3-digit NACE Rev.2 industries and 4-digit ISCO-08
occupations to emerging digital technologies 𝑋𝑘

𝑑 , we apply the inverse hyperbolic sine trans-
formation to address the right skewness in cosine similarity scores. Formally,

𝑋𝑘
𝑑 = sinh−1 (𝐶𝑘

𝑑 ) , (13)

where 𝐶𝑘
𝑑 is the cumulative cosine similarity score for industry/occupation–technology pair

(𝑑,𝑘) over 2012–2021 as defined in Equation (12).
While our exposure metric indicates the relevance of a specific technology to an indus-

try or occupation, two clarifications are necessary. First, although exposure scores serve as
a proxy for technology adoption across industries and occupations, they do not measure ac-
tual adoption. Second, our exposure scores are neutral regarding the relationship between
technology and labor, meaning they do not assume ex-ante whether they are complements or
substitutes in production. This neutrality is deliberate, allowing us to estimate the nature of
this relationship later in Section 5.

Weprovide thesedataas anopen–access resource, the ‘TechXposure’ database. Thedatabase
also includes exposuremeasures at higher levels of aggregation, such as the 1-digit and 2-digit
levels for industries, and the 1-digit to 3-digit levels for occupations. For details on the deriva-
tion of these measures, see Appendix A.7.

Our exposure scores alignwith existingmetrics in the literaturebut also capture additional
dimensions of these technologies that previous studies have not addressed, either due to the
nonexistence of these technological features or a narrower focus. For example, the AI expo-
sure scores in Webb (2019) are limited to core aspects of AI, such as industrial automation,
workflow management systems, cloud computing, and machine learning. In contrast, Felten
et al. (2021) cover a broader scope but focus only on intangible AI applications, excluding AI
embedded in tangible technologies like industrial and mobile robots, and IoT. For details on
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Figure 1: Overall Occupation Exposure by 1-digit ISCO-08 Occupation

Notes: This figure presents the distribution of exposure to emerging digital technologies across 4-digit ISCO-08 occupations, with each 1-digit
occupation displayed separately in boxplots. Vertical bars indicate the median exposure for all 4-digit occupations within the same 1-digit
occupation, and diamond points represent the average exposure for these 4-digit occupations.

the methodology and comparisons, see Appendix A.8.

4 Descriptive Analysis
In this section, we describe the exposure of both occupations and industries to emerging dig-
ital technologies. We start with occupations and then look at industries.

4.1 Occupation Exposure to Emerging Digital Technologies

We first examine the overall exposure of occupations, defined as the average exposure across
all technologies: 𝑋𝑜 = 1

40 ∑𝑘 𝑋𝑘
𝑜 , where 𝑋𝑘

𝑜 is defined by Equation (13). Figure 1 shows the
distribution of exposure to emerging digital technologies across ISCO-08 occupations. In this
figure, 4-digit occupations are grouped into their respective 1-digit categories, with their dis-
tribution presented as a boxplots. Occupation groups are ranked by their average exposure to
emerging digital technologies, indicated by the diamond point.
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We observe that Clerical Support Workers (ISCO-08 Group 4) and Plant and Machine Op-
erators, and Assemblers (Group 8) are the most exposed to emerging digital technologies.
Occupations in these groups typically involve a high proportion of routine tasks related to
information handling and production equipment supervision, respectively. Although these
middle-paying jobs have already been significantly impacted by earlier ICT waves (Goos and
Manning 2007, Goos et al. 2009, Goos et al. 2014), they remain strongly associated with newer
ICT vintages, particularly emerging digital technologies that facilitate semi- or unsupervised
information handling and equipment operation.

High-paying occupations, such asManagers (Group 1), Professionals (Group 2), andTech-
nicians and Associate Professionals (Group 3), are the next most exposed to emerging digital
technologies. These roles predominantly involve non-routine cognitive tasks that frequently
require a variety of digital technologies. As technologies evolve and new vintages emerge,
these occupationsmay experience shifts in task structure due to the introduction of new tasks.

Conversely, low-paying occupations, such as Service and Sales Workers (Group 5), Skilled
Agricultural, Forestry, andFisheryWorkers (Group6), Craft andRelatedTradesWorkers (Group
7), and Elementary Occupations (Group 9), are less exposed to emerging digital technologies.
These roles involve more interactive, non-routine tasks that are less dependent on these tech-
nologies.

Lastly,weobservegreaterheterogeneity inexposure toemergingdigital technologieswithin
high-paying occupations (Groups 1, 2, and 3) compared to middling occupations (Groups 4
and 8). This suggests that only a subset of high-paying roles is closely associated with these
technologies, whereas middling occupations display more generalized exposure.

We analyze the overall exposure of 1-digit ISCO Groups by examining their exposure to
each of the 40 emerging digital technologies. Figure 2 displays this exposure as a heatmap,
with exposure levels shown at the intersections of 1-digit occupations (rows) and emerging
digital technologies (columns). This visualization reveals two distinct patterns.

First, we observe a clear distinction between tangible and intangible technologies in their
relevance to different occupations. Tangible technology families, such as 3D Printing, Embed-
ded Systems, and Smart Mobility, are more relevant to manual occupations in ISCO Groups
6 to 9. In contrast, intangible technology families, including E-Commerce, Payment Systems,
Digital Services, Computer Vision, and HealthTech, are more pertinent to cognitive occupa-
tions, particularly within ISCO Groups 1 to 4.

Second, we observe that Technicians and Associate Professionals (Group 3) and Clerical
Support Workers (Group 4) are exposed to a broad range of emerging digital technologies.
In contrast, Managers (Group 1) and Professionals (Group 2) are associated with a narrower
scope of relevant technologies, primarily within the domain of intangible technologies. Simi-
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Figure 2: Occupation Exposure by Emerging Digital Technologies (1-digit ISCO-08)

Notes: Each cell shows the exposure of a 1-digit ISCO-08 occupation (row) to a given emerging digital technology (column). Exposure scores
below the 80th percentile (0-3.44) are transparent, whereas the four other groups represent respectively the 80th (3.44-4.01), 90th (4.01-4.47),
95th (4.47-5.28), and 99th (5.28-6.15) percentile of the distribution. Figure B.1, in the appendix, presents the same figure at the 2-digit level.

larly, exposure within ISCO Groups 6 to 9 is exclusively focused on tangible technologies. No-
tably, this aggregated mapping conceals some variability in exposure within 1-digit ISCO-08
occupations due to aggregation; for a more detailed mapping at the 2-digit level, see Figure
B.1 in the appendix.

Leveraging the semantic structure of tasks in the 4-digit ISCO-08 taxonomy, we identify
the actions within tasks most exposed to our emerging digital technologies. By construction
of ISCO-08 taxonomy, task descriptions begin with gerunds, which define the primary action
(e.g., planning, monitoring, developing, preparing, operating, cleaning). For each gerund, we
calculate its baseline frequency or simply task frequency, representing its occurrence in a 1-
digit groupof ISCO-08 taxonomy, i.e., thebaseline corpus. Thebaseline frequency reflects how
often the taxonomy uses a gerund to describe tasks within a 1-digit ISCO group, with more
frequent gerunds being core to that group. We also calculate the gerund’s target frequency
or task exposure, representing its occurrence among established task-technology pairs in a
1-digit group, i.e., the target corpus. The target frequency is high for tasks most exposed to
emerging digital technologies. ¹⁸

Figure 3 displays themost exposed tasks, expressed as gerunds, for 1-digit ISCO-08 groups.
It highlights actions to which our emerging digital technologies are the most relevant.

Weobserveheterogeneity in taskexposurebothwithinandbetween1-digit ISCO-08groups.
This suggests that the extent to which recurrent (rightmost) or specialized (leftmost) tasks are
exposed to emerging digital technologies depends heavily on the 1-digit ISCO-08 group. How-
ever, all high-skilled occupation groups, including Managers (Group 1), Professionals (Group
2), and Technicians and Associate Professionals (Group 3), display a clear tendency for the

¹⁸All frequencies are relative.
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Figure 3: Most Exposed Tasks by 1-digit ISCO-08 Occupation Groups

Notes: This figure displays the top exposed tasks, summarized with their gerunds, to all emerging digital technologies by 1-digit ISCO-08
group. The horizontal axis is the term’s baseline frequency (i.e., ISCO-08 classification). The vertical axis is the term’s target frequency. The
probabilities in the target corpus are weighted by the cosine similarity between the task and the technology. The diagonal line indicates
equality between the baseline and target frequencies.

majority of their recurrent tasks to be exposed (above the red line).
Overall, the set of most exposed tasks is fairly unique to each 1-digit ISCO-08 group, with

the exception of Technicians and Associate Professionals (Group 3) and Plant and Machine
Operators (Group 8), who both prominently feature operating and monitoring tasks among
their top exposures. This finding aligns with previous results, as these two groups have been
jointly identified as highly exposed to tangible emerging digital technologies, whereas Man-
agers (Group1) andProfessionals (Group2) are associatedwith a smaller,more specific subset
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Figure 4: Overall Industry Exposure by 1-digit NACE Rev.2 Industry

Notes: This figure presents the distribution of exposure to emerging digital technologies across 3-digit NACE Rev.2 industries, with each 1-
digit industry displayed separately in boxplots. Vertical bars indicate the median exposure for all 3-digit industries within the same 1-digit
industry, and diamond points represent the average exposure for these 4-digit industries.

of technologies (see Figure 2).¹⁹

4.2 Industry Exposure to Emerging Digital Technologies

For industries, we examine overall exposure as the average exposure across all technologies:
𝑋𝑖 = 1

40 ∑𝑘 𝑋𝑘
𝑖 , where 𝑋𝑘

𝑖 is given by Equation (13). Figure 4 shows the distribution of overall
exposure to emerging digital technologies across NACE Rev.2 industries. In this figure, 3-digit
industries are grouped into their respective 1-digit sectors, with distributions presented as a

¹⁹Further insights can be gained from examining the tasks most exposed to individual emerging digital tech-
nologies. We briefly discuss a few technologies frequently addressed in automation and labor market literature.
Monitoring and oversight tasks are particularly prominent for Internet of Things technology across all occupa-
tional groups. Industrial Automation and Robot Control technology primarily relates to operation control tasks,
while Machine Learning and Neural Networks technology generally involves various processing tasks. These fig-
ures are available in the online appendix, and the complete set of figures is available upon request.
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Figure 5: Industry Exposure by Emerging Digital Technologies (1-digit NACE Rev.2)

Notes: Each cell shows the exposure of a 1-digit NACE Rev.2 industry (row) to a given emerging digital technology (column). Exposure scores
below the 80th percentile (0-3.57) are transparent, whereas the four other groups represent respectively the 80th (3.57-4.47), 90th (4.47-5.21),
95th (5.21-6.29), and 99th (6.29-7.23) percentile of the distribution. Figure B.2, in the appendix, presents the same figure at the 2-digit level.

boxplot.
We observe that the Information and Communication (J) and Manufacturing (C) sectors

contain the most exposed 3-digit industries. This finding is notable given the substantial het-
erogeneity in exposure within these 1-digit sectors. Such differences in exposure may reflect
whether industries act as producers or intensive users, rather than light users, of emerging
digital technologies. Specifically, industries within the Information and Communication (J)
sector are likely to produce intangible technologies, while certain industries within the Man-
ufacturing (C) sector likely produce tangible technologies.

The Administrative and Support Service Activities (N) sector also exhibits a high average
level of exposure to emerging digital technologies. Several 3-digit industries within this sector
achieve overall exposure levels comparable to those in Sectors C and J. This observation is
consistent with the findings presented in Section 4.1, as Sector N is a significant employer of
Clerical Support Workers (ISCO Group 4), identified as the most exposed 1-digit ISCO Group
(see Fig. 1).

We analyze the overall exposure of 1-digit NACE sectors by examining their exposure to
each of the 40 emerging digital technologies. Figure 5 shows the exposure heatmap for 1-digit
sectors; see Figure B.2 in the appendix for a more detailed mapping at the 2-digit level.

As with occupations, we observe a divide between tangible and intangible emerging dig-
ital technologies. In the figure, exposure cells follow a diagonal pattern from the top-left to
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the bottom-right, associating tangible technologies with sectors such as Agriculture (A), Min-
ing and Quarrying (B), and Manufacturing (C), while aligning intangible technologies with
service sectors from Financial and Insurance Activities (K) to Other Service Activities (S). Be-
tween these extremes, sectors like Electricity, Gas and Air Conditioning Supply (D) through
Information and Communication (J) operate physical infrastructures and are thus more ex-
posed to tangible but distributed technology families, such as Embedded Systems and Smart
Mobility.

5 Impact on Employment
In this section, we estimate the causal effect of emerging digital technologies on regional em-
ployment using an instrumental variable (IV) shift-share approach.

5.1 Overall Impact of Emerging Digital Technologies

We use employment data from the Regional European Labour Force Survey (EU-LFS), which
provides informationon thenumberof employeesandpopulationacross several demographic
groups.²⁰ Our sample includes 320 NUTS-2 regions in 32 European countries.²¹

Our outcome variable is the change in the regional employment-to-population ratio be-
tween 2012 and 2019. This ratio is defined as the number of employees within the group of
interest (e.g., the total population or the youth population) divided by the total number of
individuals aged 15 or older.

Our analysis uses a long-difference approach for the period between 2012 and 2019. We
begin in 2012, which is the starting year of our patent sample and therefore serves as the base-
line for measuring exposure to emerging digital technologies. We conclude in 2019 to avoid
potential confounding factors associated with employment and population changes due to
the COVID-19 pandemic.²²

The EU-LFS also provides data on the number of employees across 1-digit NACE indus-
²⁰These demographic groups include male, female, young (aged 15 to 24 years), mature (aged 25 to 64 years),

and low-, middle-, and high-skilled workers, defined by educational level (i.e., primary, secondary, and tertiary).
²¹The countries in the sample are (in alphabetical order): Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech

Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithua-
nia, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden,
Switzerland, Turkey, and the United Kingdom.

²²Although our exposure metrics in Section 3 span 2012–2021, we recalculate them for the subperiod 2012–
2019 to ensure consistency with the timeframe in this analysis.
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tries, categorized into 10 distinct sectors.²³
Estimating the causal impact of technology on employment involves twomain challenges:

reverse causality and omitted variable bias. Reverse causality implies that technological ad-
vancements couldbedrivenby labor shortagesor rising labor costs. Furthermore, unobserved
factors—such as shifts in industry organization or infrastructure investments—might simul-
taneously influence both technological change and employment levels.

To address these concerns, we adopt a shift-share strategy, leveraging recent advance-
ments in this methodology (Adão et al. 2019; Goldsmith-Pinkham et al. 2020; Borusyak et al.
2021). Specifically, we use the Bartik instrument to measure the region’s exposure𝑋𝑟 as fol-
lows:

𝑋𝑟 = ∑
𝑗

𝑙𝑟𝑗𝑋𝑗, (14)

where 𝑙𝑟𝑗 is the employment share of sector 𝑗 in region 𝑟 in the baseline year 2010.²⁴ The term
𝑋𝑗 denotes the average exposure of sector 𝑗 to emerging digital technologies from 2012 to
2019, calculated as

𝑋𝑗 ≡ 1
40 × ∑

𝑘∈𝒦
𝑋𝑘

𝑗 ,

where 𝑋𝑘
𝑗 represents the average exposure of sector 𝑗 to each technology 𝑘 across all 1-digit

NACE industries 𝑖 ∈ 𝑗 during this period.
Weargue that sectoral exposure to emergingdigital technologies,𝑋𝑗, which represents the

shock in our shift-share design, is quasi-exogenous to changes in regional employmentwithin
Europe. Our metrics for industrial exposure, as derived in Section 3, rely on the semantic
similarity between patents and industry descriptions. Notably, only 7.1% of the patents in
our sample originate from Europe, indicating that the advancement of these technologies is
largely a global phenomenon. Consequently, global technological trends are unlikely to be
driven solely by regional labor markets in Europe. To reinforce this point, we recalculated our
exposure measure after excluding European patents.²⁵

Since our shocks are assumed to be exogenous to local employment changes in European
²³These sectors include Agriculture (A); Industry (B-E); Construction (F); Market Services (G-I); Information

and Communication (J); Financial and Insurance Activities (K); Real Estate Activities (L); Professional, Scientific,
Technical, Administration, and Support Service Activities (M-N); Public Administration, Defence, Education, Hu-
man Health, and Social Work Activities (O-Q); and Other Services (R-U).

²⁴Table C.1 in the appendix provides details on the average employment share by economic sector across Eu-
ropean regions in 2010. The three largest sectors are Market Services (average employment share of 23.8%), the
Public Sector (23.7%), and Industry (17.9%). The Information and Communication sector, which is highly ex-
posed to emerging digital technologies, accounts for only 2.3% of employment on average.

²⁵In theOnlineAppendix, we compare the 1-digit industry exposure scoreswith andwithout Europeanpatents
(i.e., patents filed with the European Patent Office). The correlation remains approximately 0.99 across all 40
emerging digital technologies, underscoring the global nature of these technological advancements.

22



labor markets, we apply the equivalence proposed by Borusyak et al. (2021) and can thus con-
sider our shift–share as a valid instrument.²⁶ In addition to the quasi-random assignment of
shocks, our second identifying assumption is that regions more exposed to emerging digital
technologies are not disproportionately affected by other labor market shocks or trends, and
that the number of observed shocks is sufficiently large.²⁷

Figure 6 shows the geographic distribution of exposure across European regions. Emerg-
ing digital technologies are more prevalent in industries concentrated in European capital
cities, which typically have larger service sectors compared to more peripheral regions. Be-
yond capital cities, regionswith thehighest exposure levels are predominantly located inWest-
ern Europe, specifically in countries such as Germany, Italy, Spain, Switzerland, and the UK.

Figure7 showsapositive relationshipbetween thechange in theemployment-to-population
ratio from2012 to 2019 and the regional exposure to emerging digital technologies.²⁸ However,
although this observed correlation is statistically significant, it is not adjusted for country fixed
effects and regional demographic characteristics.

Weestimate the impactof regional exposure toemergingdigital technologieson thechange
in the regional employment-to-population ratio using the following empirical specification:

Δ𝑌𝑟 = 𝛼+𝛽𝑋𝑟 +𝑍𝛿 +𝜙𝑐(𝑟) +𝑢𝑟, (15)

where Δ𝑌𝑟 represents the change in the employment-to-population ratio (in pp.) for region
𝑟 between 2012 and 2019, 𝑋𝑟 denotes the regional exposure to emerging digital technologies
as defined in Equation (14) and standardized, 𝑍 is a set of covariates which capture regional
characteristics,²⁹ 𝜙𝑐(𝑟) represents country fixed effects, and 𝑢𝑟 is the error term.

Table 3 presents estimates of the effect of regional exposure to emerging digital technolo-
gies on the change in the employment-to-population ratio from 2012 to 2019. Since exposure
is standardized across regions, the estimated coefficient ̂𝛽 can be interpreted as the effect of a
one-standard-deviation increase in regional exposure on the employment-to-population ra-

²⁶Figure C.1 in the appendix illustrates the positive correlation between employment changes and shocks at
the sector level in Europe.

²⁷The Herfindahl index (HHI) of average shock exposure is calculated as ∑𝑗 𝑙2
𝑗 = 0.168, where 𝑙𝑗 represents

the average employment share in sector 𝑗 in 2010 across all regions, as shown in Table C.1. This HHI can be
considered relatively small, as the minimum index under a uniform distribution would be 1/|𝐽| = 0.1. Thus,
the latter part of our assumption is realistic. The effective sample size, corresponding to the inverse of the HHI,
is 5.95.

²⁸In the Online Appendix, we show that this positive relationship persists even after excluding regions with
exceptionally low exposure levels—specifically, those below −2 standard deviations (i.e., below 1.149), which
typically includes rural areas in Romania, Turkey, and overseas French territories.

²⁹Our control variables, fixed at their 2010 values to avoid endogeneity, include the log of population (in thou-
sands), the proportion of females, the proportion of the population aged over 65, the proportion with secondary
and tertiary education, and the proportion employed in the industry sector.
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Figure 6: Geographic Distribution of Regional Exposure to Emerging Digital Technologies
across Europe from 2012 to 2019

Notes: This figure illustrates the geographic distribution of exposure to emerging digital technologies for NUTS-2 regions. Regional exposure
is constructed as a shift-share variable by interacting the sectoral employment shares in the baseline year 2010 and sectoral exposure to these
technologies from 2012 to 2019. Regions are categorized into deciles. Regions are shaded according to their exposure level, with the legend
indicating the range of exposure. Areas not applicable (NA) are marked in grey.

tio, measured in percentage points (pp.). Following recent literature on shift-share designs,
we control for the sum of exposure shares (Borusyak et al., 2021) and report AKM0 shift-share
standard errors, which account for arbitrary cross-regional correlation in the regression resid-
uals (Adão et al., 2019).

The positive relationship observed in Figure 7 remains robust when fixed effects and vari-
ous covariates, such as regional demographic characteristics and industry share, are included.
In the specification with all covariates (shown in the last column), a one-standard-deviation
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Figure 7: Change in Employment-to-Population Ratio and Exposure to EmergingDigital Tech-
nologies

Notes: This figure shows the relationship between the change in the employment-to-population ratio and the exposure to emerging digital
technologies in European NUTS-2 regions between 2012 and 2019. Each point represents a region. The size of the point is proportional to
the population in 2010. The horizontal axis measures the exposure to emerging technologies calculated by the shift-share method, while
the vertical axis represents the change in the employment-to-population ratio in percentage points (pp.). The solid line indicates a positive
correlationbetween regional exposure toemerging technologies andemployment growth. Thegrey shadedarea indicates the95%confidence
interval.

increase in regional exposure corresponds to a 1.029 pp. change, or 2.05%, in the employment-
to-population ratio from 2012 to 2019.

The latter estimation suggests that the overall impact of emerging digital technologies on
employment is positive at the regional level. However, it remains to be seen whether this pos-
itive relationship holds uniformly across all demographic groups. Table 4 provides estimates
of the same empirical specification, including the full set of control variables, for various de-
mographic groups.

Emerging digital technologies have an overall positive impact on both female and male
employment. A one-standard-deviation increase in regional exposure over the period leads to
a 0.673 pp. change (equivalent to 3.03%) in the employment-to-population ratio for women
and a 0.355 pp. change (1.27%) for men. Although the impact is twice as large for women,
there is greater regional heterogeneity in this effect, as indicated by the larger standard errors
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Table 3: Effect of Emerging Digital Technologies on Regional Employment

Δ Emp-to-pop. ratio (2012-2019) × 100
(1) (2) (3)

Exposure to Emerging Technologies 0.640∗∗ 0.926∗∗∗ 1.029∗∗∗

(0.239) (0.139) (0.120)
Country FE ✓ ✓ ✓
Demographics ✓ ✓
Industry share ✓
R2 0.668 0.696 0.698
Adj. R2 0.629 0.655 0.656
Num. obs. 320 320 320

Notes: This table presents the estimates of exposure to emerging digital technologies on regional employment. It presents the
coefficients measuring the effect of regional exposure to emerging technologies, constructed as shift-shares and standardized,
on changes in the employment-to-population ratio between 2012 and 2019 in European regions, expressed in percentage points.
Regressions are weighted by population in 2010. Column (1) includes country fixed effects; Column (2) adds demographics
controls in 2010, including the logarithmof population, the proportion of females, the proportion of the population agedover 65,
and the proportions of the population with secondary and tertiary education levels; Column (3) adds the share of employment
in the industry sector. All columns control for the sum of exposure shares. ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors
between parentheses are derived following the AKM0 inference procedure from Adão et al. (2019).

compared to those for men.
Both young workers (aged 15 to 24) and mature workers (aged 25 to 64) experience a pos-

itive impact from emerging digital technologies. The former group experiences a 0.181 pp.
change in the employment-to-population ratio, representing a 3.8% increase, while the latter
group experiences a 0.849 pp. change, representing a 1.87% increase. This finding aligns with
Adão et al. (2024), who show that labor market adjustments to technological innovations, or
technological transitions, are often driven by the gradual entry of younger generations.

Emerging digital technologies positively impact employment only at the extremes of the
skill distribution, specifically among low- andhigh-skilledworkers, with respective changes of
0.715pp. (+6.01%) and0.738percentagepoints (+4.92%) in their employment-to-population
ratios following a one-standard-deviation increase in regional exposure. Conversely, a simi-
lar increase in regional exposure results in a decline of 0.412 percentage points (−1.78%) in
the employment-to-population ratio for middle-skilled workers. This differentiated effect in-
dicates that job polarization continues to be driven by emerging digital technologies.
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Table 4: Effect of Emerging Digital Technologies on Regional Employment by Demographic Groups

Δ Emp-to-pop. ratio (2012-2019) × 100
All Gender Age Skill

Total Female Male Y15-24 Y25-64 Low Mid High
Exposure to Emerging Technologies 1.029∗∗∗ 0.673∗∗∗ 0.355∗∗∗ 0.181∗∗∗ 0.849∗∗∗ 0.715∗∗ −0.412∗∗∗ 0.738∗∗∗

(0.120) (0.105) (0.027) (0.026) (0.103) (0.215) (0.043) (0.124)
Country FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Demographics ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Industry share ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Emp-to-pop. ratio in 2012 50.14 22.22 27.92 4.76 45.38 11.89 23.11 15.00
Change (in %) 2.05 3.03 1.27 3.80 1.87 6.01 −1.78 4.92
R2 0.698 0.558 0.726 0.333 0.722 0.630 0.754 0.647
Adj. R2 0.656 0.497 0.688 0.240 0.684 0.579 0.720 0.598
Num. obs. 320 320 320 320 320 320 320 320
Notes: This table presents the estimates of exposure to emerging digital technologies on regional employment by demographic groups. It presents the coefficients measuring the effect of
regional exposure to emerging technologies, constructed as shift-shares and standardized, on changes in the employment-to-population ratio between 2012 and 2019 in European regions,
expressed in percentage points, for all workers, female and male workers, young (aged 15-24) and mature (aged 25-64) workers, and low-, middle-, and high-skilled workers. Regressions are
weighted by population in 2010. All columns include a control for the sum of exposure shares; country fixed effects; demographics controls in 2010, including the logarithm of population,
the proportion of females, the proportion of the population aged over 65, the proportions of the population with secondary and tertiary education levels; and the share of employment in
the industry sector. ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses are derived following the AKM0 inference procedure from Adão et al. (2019).
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As a robustness check, we conduct a placebo test by estimating the effect of regional ex-
posure to emerging digital technologies from 2012 to 2019 on the change in the employment-
to-population ratio during the pre-period, specifically from 2002 to 2009. These estimates,
presented in Table C.2 in the appendix, show null effects for all demographic groups in the
pre-period, reinforcing the validity of our shift-share approach. The only notable exception is
a positive and significant effect on the employment of high-skilled workers. We interpret this
result as consistent with our expectations, as regions more exposed to emerging digital tech-
nologies are likely those where the share of high-skilled workers has increased themost, given
that these technologies areprimarily developedandproducedbyworkers in this demographic
group.

5.2 Disentangling the Individual Effects of Emerging Digital Technolo-
gies

To estimate the individual effects of regional exposure to each emerging digital technology on
employment, we apply the same shift-share strategy independently to each technology.³⁰ The
regional exposure to a specific technology 𝑘 is given by:

𝑋𝑘
𝑟 = ∑

𝑗
𝑙𝑟𝑗𝑋𝑘

𝑗 ,

where 𝑙𝑟𝑗 denotes the employment share of the sector 𝑗 in region 𝑟 in 2010, and 𝑋𝑘
𝑗 is the

exposure of sector 𝑗 to technology 𝑘.³¹
Estimating the individual effect of a single technology on labor is challenging because

technologies can be complementary and are often implemented together. For example, re-
cent literature on the employment impact of robots, a specific technology, typically controls
for the use of ICT to account for complementarities between the two technologies (Acemoglu
and Restrepo 2020; Dauth et al. 2021; among others). Similarly, specific emerging digital tech-
nologies, such as Cloud Storage, may complement other digital technologies. Additionally,
the degree of complementarity may vary within the same technology family or with other
emerging technologies. For instance, Cloud Storage is likely more complementary with tech-
nologies within Digital Services, such as Cloud Computing, rather than with those from other
families, like 3D Printing or Payment Systems. Therefore, we propose an empirical approach
that accounts for these complementarities tomitigate bias in estimating the individual impact

³⁰We also estimate the employment impacts at the emerging digital technology family level; see Appendix C.4
for further details.

³¹Figures C.4 to C.8 in the appendix report the geographic distributions of exposure to individual emerging
digital technologies.
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of a specific technology on employment.
We estimate the impact of regional exposure to each emerging digital technology on the

regional employment-to-population ratio using the following empirical specification:

Δ𝑌𝑟 = 𝛼+𝛽𝑘𝑋𝑘
𝑟 +𝛾1𝑘𝑋𝐾\{𝑘}

𝑟 +𝛾2𝑘𝑋−𝐾
𝑟 +𝑍𝛿 +𝜙𝑐(𝑟) +𝑢𝑟, (16)

where 𝑋𝑘
𝑟 is the regional exposure to technology 𝑘 (our variable of interest), 𝑋𝐾\{𝑘}

𝑟 represents
the regional exposure to all other technologies within the same family (excluding the one of
interest), 𝑋−𝐾

𝑟 indicates the regional exposure to all remaining emerging digital technologies,
and 𝑍 includes the same set of covariates as in Equation (15). Both 𝑋𝐾\{𝑘}

𝑟 and 𝑋−𝐾
𝑟 are

calculated as shift-share variables.
The estimated coefficient of interest, ̂𝛽𝑘, represents the employment effect, measured as

a percentage point change, resulting from a one-standard-deviation increase in regional ex-
posure to a specific emerging digital technology 𝑘. This estimate is conditional on regional
exposure to both its technology family and all other emerging technologies. Controlling for
these additional exposures is essential for isolating the causal effect of regional exposure to a
specific technology, independent of the effects of other emerging digital technologies or their
combinations.

We present results at the individual technology level for two groups of technologies that
have received significant attention in the literature and exhibit noteworthy patterns: robots
and data-intensive technologies. Estimates for all individual technologies are provided in the
appendix (see Figures C.9 to C.13).

Robots. Figure 8displays the estimatedcoefficients and their corresponding95%AKM0con-
fidence intervals for the employment effects of three technologies that encompass three dif-
ferent types of robots. The figure is interpreted as follows: each panel represents a different
technology, with demographic groups listed on the vertical axis and the estimated coefficients
shown on the horizontal axis.

Both industrial automation (which includes industrial robots) and intelligent logistics (which
encompasses mobile robots) have negative impacts on employment, particularly for female
and mature workers, with the impact of industrial automation being twice as large as that of
intelligent logistics. Increased regional exposure to these robot-inclusive technologies raises
employment among high-skilled workers while reducing it for low- and middle-skilled work-
ers.

We do not find any significant effect of autonomous vehicles on total employment, except
for a small decrease in male employment and a slight increase in middle-skilled employment.
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Figure 8: Employment Effect of Robots

Notes: This figure presents the coefficients measuring the effect of regional exposure to emerging digital technology, constructed as shift-
shares and standardized, on changes in the employment-to-population ratio, expressed in percentage points (pp.), between 2012 and 2019
in European regions, for all workers, female and male workers, young (aged 15-24) and mature (aged 25-64) workers, and low-, middle-, and
high-skilled workers. Each panel represents a technology. The confidence intervals are reported at the 5% significance level using the AKM0
inference procedure from Adão et al. (2019). Regressions are weighted by population in 2010 and the set of control variables include country
fixed effects, the sumof exposure shares as a control, demographics controls in 2010 (including the logarithmofpopulation, theproportionof
females, the proportion of the population aged over 65, the proportions of the population with secondary and tertiary education levels), the
share of employment in the industry sector, and the regional exposure to all other emerging digital technologies within the same technology
family and outside, both also constructed as shift-shares.

This may reflect the limited diffusion of this technology across European regions, beyond a
few highly advanced areas.

Data-IntensiveTechnologies. Figure9 shows theestimatedcoefficients for theemployment
effects of data-intensive technologies. Among these, Electronic Messaging, Cloud Storage &
Data Security, andMachine Learning &Neural Networks have significant negative impacts on
the overall employment-to-population ratio. Similar to robots, these technologies tend to dis-
place female and mature workers rather than male and young workers. Additionally, as with
the impact of robots, greater regional exposure to these technologies increases employment
among high-skilled workers, while employment declines for low- and middle-skilled workers.

While Cloud Storage has a sizeable impact on employment, we do not detect any impact
from Cloud Computing, as indicated by the bottom middle panel. This suggests that Cloud
Computing, on its own, neither creates employment opportunities nor displacesworkers, con-
ditional on the presence of other emerging digital technologies. However, it may act as a com-
plementary or enabling technology—one that amplifies the employment effects of other tech-
nologies when used in combination.

Lastly, Information Processing and Workflow Management exhibit positive impacts on
employment. A one-standard-deviation increase in exposure to these technologies raises the
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Figure 9: Employment Effect of Data-Intensive Technologies

Notes: This figure presents the coefficients measuring the effect of regional exposure to emerging digital technology, constructed as shift-
shares and standardized, on changes in the employment-to-population ratio, expressed in percentage points (pp.), between 2012 and 2019
in European regions, for all workers, female and male workers, young (aged 15-24) and mature (aged 25-64) workers, and low-, middle-, and
high-skilled workers. Each panel represents a technology. The confidence intervals are reported at the 5% significance level using the AKM0
inference procedure from Adão et al. (2019). Regressions are weighted by population in 2010 and the set of control variables include country
fixed effects, the sumof exposure shares as a control, demographics controls in 2010 (including the logarithmofpopulation, theproportionof
females, the proportion of the population aged over 65, the proportions of the population with secondary and tertiary education levels), the
share of employment in the industry sector, and the regional exposure to all other emerging digital technologies within the same technology
family and outside, both also constructed as shift-shares.

employment-to-population ratio by 3.25 pp. and 1.81 pp., respectively. For Information Pro-
cessing, the employment gains are concentrated among low-skilled workers. Although the
coefficients for middle- and high-skilled employment are negative but insignificant, this may
suggest that Information Processing enables low-skilled workers to engage in more complex
and abstract tasks, thereby increasing labor demand at the lower end of the skill distribu-
tion. WorkflowManagement also positively impacts employment, benefiting all demographic
groups. When examining skill levels, we find no evidence of skill-biased technological change,
as all coefficients are positive, though not statistically significant. This suggests that Workflow
Management has a uniformly positive impact across the skill distribution.

6 Conclusion
Recent advancements in digital technologies, particularly in AI, have raised significant public
and academic interest in understanding the impact of these emerging technologies on future
employment. Determining whether these technologies will generate more jobs than they dis-
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place is a crucial issue for both individuals and policymakers. However, previous research has
primarily concentrated on examining either specific technologies, such as industrial robots
or certain AI applications, or a broad range of digital technologies commonly referred to as
“automation technologies”.

In this study, we identify a broader array of emerging digital technologies than previous
research and analyze their impact on employment. Our empirical results show that these tech-
nologies generally have a positive effect on the employment-to-population ratio, thereby cre-
ating jobs rather than eliminating them. However, we observe considerable heterogeneity
in these impacts: while some technologies, such as robots, negatively affect employment—
especially among low- and middle-skilled workers—others, like information processing and
workflow management systems, contribute to employment growth. Furthermore, our find-
ings suggest that focusing solely on specific technologies, such as AI and robotics, may over-
look the broader positive employment effects arising from complementarities among diverse
digital technologies.

A key component of this work is a new measure of the exposure of industries and occupa-
tions to 40 digital technologies that have emerged over the past decade. By leveraging state-of-
the-art NLP tools, such as sentence transformers, we introduce a novelmethodology to assess
exposure at a granular level. Our pioneering dataset is available as an open–access resource,
called the ‘TechXposure’ database.

We outline the advantages and limitations of the exposure scores in the ‘TechXposure’
database. First, because our scores are based on text data from standard international clas-
sifications, they are universally applicable and not specific to any European country. Second,
our method does not rely on keywords or tokens and only requires relevant patents, making it
adaptable to other contexts, such as green technologies or future ISCO/NACE classifications.

However, our exposure scores do not account for the augmentation or automation effects
on occupations and industries; they solely reflect the relevance of technologies to a given in-
dustry or occupation. This limitation allows us to make fewer assumptions during data con-
struction, acknowledging that some technologies may positively impact employment in one
context but negatively in another.

Additionally, our set of emerging digital technologies excludes recent developments in
Large Language Models (LLMs), like ChatGPT, as our analysis covers technologies up to 2021.
Nonetheless, it includes several other AI applications, particularly in Machine Learning (for
computer vision), Information Processing, and Workflow Management. Finally, while our ex-
posuremetrics serve as proxies for the adoption of these digital technologies across industries
and occupations, they do not measure actual adoption—a topic we plan to explore in future
research.
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We consider our paper a foundational contribution to future research on technological
change and labor markets. By constructing this open–access database, we anticipate that fu-
ture studies will greatly benefit from its unprecedented detail in analyzing the exposure of
occupations and industries to a wide range of emerging digital technologies. These include
not only widely discussed technologies, such as robots and AI, but also lesser-studied ones
like social networks, cloud computing, and health technologies. Since our database is based
on international classifications of occupations and industries, it offers valuable potential for
research beyond the US context. Such research could yield insights into the economic im-
pact of emerging technologies, especially given Europe’s institutional diversity, which may
significantly shape technology adoption and labor market effects. We believe our database is
accessible and user-friendly for both researchers and policymakers.
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Appendices

A Data Appendix

We provide additional information on the set of emerging digital technologies and the deriva-
tion of exposure scores.

A.1 Patent Corpus Construction

Query and Patent Corpus. The patent corpus in Chaturvedi et al. (2023) is constructed by
querying theDerwent Innovation Index (DII) database. Thequery has two components, using
patent codes (Derwent Manual Codes and International Patent Classification codes) and key-
words from previous studies on digital automation technologies and Industry 4.0 (Cockburn
et al. 2019; Webb 2019; Martinelli et al. 2021). The first component retrieves digital automa-
tion inventions related to i) process and machine control in physical production sectors like
manufacturing, agriculture, mining, and construction, and ii) process and workflow control
in services. The second component narrows the sample to large technology families, such as
AI, computing, networking, datamanagement, anduser interfaces, basedonprior researchon
emerging digital technologies (Savona et al. 2022). The final sample includes 1,143,033 patent
families from 2000 to 2021. Figure ?? illustrates the SQL-style structure of the query, with the
full details available in the Online Appendix.

Figure A.1: SQL-stylized Structure of the Patent Query

Notes: This figure presents the structure of the patent query used to construct the total sample in Chaturvedi et al. (2023). The list of CPC
codes in A, B, and C is available in the Online Appendix.
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Patent Embeddings. To analyze emerging digital technologies, Chaturvedi et al. (2023) con-
catenate patent titles and abstracts to create embeddings. Using the pre-trained sentence
transformer model all-mpnet-base-v2 (Song et al. 2020), each patent text is mapped into a
768-dimensional space, converting text into semantic vectors. This transformation enables
large-scale analysis and comparison of document meanings using other ML and NLP meth-
ods.

Core Digital Patents. To identify the backbone of the corpus of digital automation inven-
tions, the Local Outlier Factor (LOF) algorithm is employed. Proposed by Breunig et al. (2000),
LOF is an anomaly detection algorithmappliedbyChaturvedi et al. (2023) to search for seman-
tic core among patents. Thus, it measures the local density of a focal document compared to
the local density of its k-nearest neighbors in the semantic space. The locality (i.e., the size
of the neighborhood) is set by the parameter 𝑘. A document with a notably dense neighbor-
hood is considered part of the backbone. For identification of the backbone among digital
innovations, larger values of 𝑘 are more suitable as they allow for larger neighborhoods and
hence, a wider reference group of patents to compute LOF measure. Chaturvedi et al. (2023)
use 𝑘 = 1000 and the LOF measure is computed for each patent in year 𝑡 using the cumulative
set of patents up to year (𝑡−1).

Since Chaturvedi et al. (2023) are interested in emerging digital automation technologies
whose impact on labor markets is unfolding, they identify established/core digital patents in
the most recent decade of the patent sample, i.e. 2012–2021. They begin with a base sample
of 258,344 patents from 2001-–2011 and calculate the LOF measure for each year from 2012
to 2021, updating the base sample iteratively. For example, to compute the LOF measure for
patents filed in 2014, the base sample includes patents from 2001–2013.

Lastly, core patents are defined as those in the bottom 10% of the LOF measure for each
year over the 2012–2021 period. These patents form the backbone of the patent corpus, being
the most representative of digital automation technologies. A low LOF measure indicates a
dense semantic neighborhood, meaning these patents are highly central within their local
semantic spaces.

Offshoots. To track the development of these core technological innovations throughout
the 2012–2021 period, Chaturvedi et al. (2023) identify their offshoots (i.e., subsequent inven-
tions that build on and are semantically similar to the core ones). For each core patent, the
authors compute cosine similarity to all patents in each subsequent year and define as off-
shoots patents in the top 10% of cosine similarity within each year.

The final patent corpus 𝒫 comprises 190,714 core digital automation patents and their
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offshoots.

A.2 Description of Emerging Digital Technologies

Tables A.1 to A.3 present the 40 emerging digital technologies from the TechXposure database
as well as their descriptions.

A.3 Manual Exclusions

Industry. For industries, we make the following manual adjustments:

• We exclude the exposure scores that relate to ‘Printing and service activities related to
printing’ (18.1) due to the persistent conflation of its intended meaning (i.e. printing
products with text, symbols (e.g. musical notation), and imagery (e.g. maps, engraving,
etc.)) with emerging digital technologies.

• We exclude the sentence “manufacture of computer printout paper ready for use” (Sen-
tence ID 17.2_11) from the industry description text of ‘Manufacture of articles of paper
and paperboard’ (17.2) when combining tasks with patents belonging to the technolo-
gies within the 3D Printing family.

• We exclude the sentence “units giving this type of instructions might be named “schools”,
“studios”, “classes” etc.” (Sentence ID85.5_17) fromthe industrydescription text of ‘Other
education’ (85.5) when combining tasks with patents belonging to the technology Ma-
chine Learning.

Occupation. For occupations, we make the following manual adjustments:

• Analogously with industry 18.1, we exclude the exposure scores that relate to ‘Printing
tradesworkers’ (732) and its nested occupations (7321, 7322, 7323) due to the persistent
conflation of its intended meaning with emerging digital technologies.

• We exclude the task “creating the blueprint or pattern pieces for a particular apparel de-
sign with the aid of a computer;” (Task ID 7532_2) from the occupation description text
of ‘Printers’ (7532) when combining tasks with patents belonging to the technology Ma-
chine Learning.

• We exclude the task “preparing and developing instructional training material and aids
such as handbooks, visual aids, online tutorials, demonstration models and supporting
training reference documentation;” (Task ID 2424_3) from the occupation description
text of ‘Training and staffdevelopment professionals’ (2424)when combining taskswith
patents belonging to the technology Machine Learning.
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A.4 Redundancy Filtering Examples

Tables A.4 and A.5 present additional examples of redundancy filtering for industries. Tables
A.6 to A.8 present examples of redundancy filtering for occupations.

A.5 Distribution of Patents and Citation-basedWeighting Scheme

Figure A.2 presents the distribution of patents across emerging digital technologies. Figure
A.4 presents the distribution of non-cited and undetermined-count patents across emerging
digital technologies. Figure A.3 presents the log distribution of patent citations across emerg-
ing digital technologies. Figure A.5 presents the correlation between citation-weighted and
unweighted yearly cosine similarity scores for both industries and occupations.

A.6 Technology Co-Occurrence

Using cosine similarity scores, we analyze the semantic co-occurrence of emerging digital
technologies across occupations. Let 𝐶𝑘

𝒪 = (𝐶𝑘
1 ,…,𝐶𝑘

𝑜 ,…,𝐶𝑘
𝑂) represent the vector of cosine

similarity scores for all occupations related to technology 𝑘. We define the pairwise semantic-
based technology co-occurrence as the correlation between 𝐶𝑘

𝒪 and 𝐶𝑘′
𝒪 for each pair of tech-

nologies (𝑘,𝑘′). These pairwise correlations are computed for all technologies using semantic
similarity scores at the 3-digit occupational level.

Figure A.6 shows technology groupings based on cosine semantic scores, revealing dis-
tinct segments categorized as ’technology families’. Starting from the top-left corner and mov-
ing along the diagonal, the first group encountered includes technologies related to 3D Print-
ing. Subsequent to this, the range from Smart Agriculture to Smart Home falls within the Em-
bedded Systems family. A significant block then emerges, spanning from Intelligent Logis-
tics to Passenger Transportation, and encompasses Smart Mobility technologies. Following
this, a standalone block dedicated to FoodOrdering appears. The next two blocks represent E-
Commerce and Payment Systems, respectively. This sequence is succeeded by themost exten-
sive block, which includes 12 technologies and relates to Digital Services. Afterward, AR/VR,
Machine Learning, and Medical Imaging are grouped under Computer Vision technologies.
Finally, the figure concludes with HealthTech technologies.

A.7 Exposure Scores at Higher Levels of Aggregation

To calculate exposure scores at higher aggregation levels within the ISCO and NACE classifi-
cations, we apply the inverse hyperbolic sine transformation to the average cosine similarity
score, aggregated from the most granular classification level up to the desired level of interest.
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For example, consider the calculation of the exposure score for a 1-digit NACE industry
𝐼 ⊂ ℐ to an emerging digital technology 𝑘. We start by aggregating the cosine similarity score
to the higher classification level as follows:

𝐶𝑘
𝐼 = 1

|𝐼| ∑
𝑖∈𝐼

𝐶𝑘
𝑖 ,

where 𝐶𝑘
𝑖 is cosine similarity score between a 3–digit industry 𝑖 (belonging to the 1-digit indus-

try 𝐼) and technology 𝑘, as obtained in Equation (12). We then apply the inverse hyperbolic
sine transformation to obtain the exposure score, namely, 𝑋𝑘

𝐼 = sinh−1 (𝐶𝑘
𝐼 ). This approach is

similarly used to calculate exposure scores for 2-digit industries and for occupation exposures
at higher aggregation levels.

A.8 Comparing Exposure Scores with Other Metrics

We compare our occupational exposure scores with metrics from Frey and Osborne (2017),
Webb (2019), and Felten et al. (2021). These studies provide exposure scores for specific dig-
ital technologies that are subsets of our list. Challenges in comparison are the different oc-
cupational classifications and variations in the definitions of technologies among the studies.
To address classification differences, we use crosswalks between systems, aggregating expo-
sure scores within a 4-digit ISCO-08 occupation by averaging exposures across all matched
occupations. Table A.9 summarizes key aspects of these studies, including descriptions of the
technologies represented, data and methodology used for exposure score construction, and
score interpretations, facilitating comparison and aiding result interpretation.

Webb (2019). Exposure scores in Webb (2019) cover three broad technologies: robots, AI,
and software. These scores are expressed in percentiles from 0 to 100, with 100 representing
the highest exposure. Occupations are classified using the “occ1990dd” system developed by
Dorn (2009) and extended by Deming (2017). We link these occupations to the 2010 Census
Occupational Classification using the crosswalk from Autor and David (2015). From there,
we derive the 2010 SOC and then the ISCO-08 occupations through two crosswalks provided
by the Bureau of Labor Statistics (BLS). Once ISCO-08 occupations are linked to the initial
“occ1990dd” occupations, we aggregate the exposure scores for each 4-digit ISCO-08 occupa-
tion by averaging them separately for the three technologies. Finally, we recompute the expo-
sure scores as percentiles and transform the TechXposure scores into percentiles for compar-
ison.
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Felten et al. (2021). Exposure scores in Felten et al. (2021) cover ten AI applications and are
standardized with a zero mean and a standard deviation of one. Occupations are classified
using the 2010 SOC. Using the BLS crosswalk, we convert 2010 SOC occupations to 4-digit
ISCO-08. We aggregate by taking the average, before recomputing the standardized exposure
scores. We also standardize the TechXposure scores for comparison.

Frey and Osborne (2017). Exposure scores in Frey and Osborne (2017) measure the risk of
computerization of occupations, expressed as probabilities between 0 and 1. Occupations
are classified using the 2010 SOC. We apply the same procedure as for Felten et al. (2021),
normalizing the exposure scores.

We compute the correlation between our exposure scores for each technology and those
obtainedwith thesemetrics at the4-digit ISCO-08 level and report the correlationsas aheatmap
in Figure A.7. The figure reveals several insights. First, our exposure metrics correlate overall
with those in the literature. The robot and software exposure scores in Webb (2019) align with
our metrics across a range of emerging digital technologies. Specifically, Webb’s robot expo-
sure scores are highly correlated with our tangible emerging digital technologies and capture
occupation exposure to industrial robots.

Conversely, we find that AI exposure scores in Webb (2019) are confined to core AI appli-
cations, such as some embedded technologies (i.e., energy management, industrial automa-
tion, and remote monitoring) and data-intensive technologies (i.e., machine learning, work-
flow management systems, and cloud computing), thus missing broader AI applications like
medical imaging or information processing.

Exposure scores in Felten et al. (2021) correlatewith abroader set of our technologies, indi-
cating they cover a wider spectrum of AI applications as compared to Webb (2019). However,
they are negatively correlated with embedded systems as they do not account for embedded
AI (see Table A.9), reflecting that their exposure scores are more oriented toward high-skilled
jobs.

Lastly, software exposure in Webb (2019) and computerization exposure in Frey and Os-
borne (2017) correlate with a large segment of our emerging digital technologies. However,
the magnitudes of these correlations are smaller, as both computerization and software are
inherent to emerging digital technologies.
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Table A.1: Description of the Emerging Digital Technologies (1/3)

Technology Description

1 3D Printer Hardware Three-dimensional printers and their components, such as printing heads, pens,
nozzles, platforms, and devices for printing, extruding, cleaning, recycling, heat-
ing, and cooling.

2 3D Printing Printing systems for creating three-dimensional objects using a variety of mate-
rials and techniques, like photocuring and powder spreading.

3 Additive Manufacturing Technologies and processes for additive manufacturing, with applications such
as prostheses and building materials.

4 Smart Agriculture & Water
Management

Various Internet of Things (IoT) technologies for intelligent and remote manage-
ment in agriculture, and water and sewage systems.

5 Internet of Things (IoT) Systems and devices interconnected via IoT for data collection, remote control,
and real-timemonitoring indiverse applications, including agriculture, homeau-
tomation, and environmental monitoring.

6 Predictive Energy Manage-
ment and Distribution

A combination of network, data management, and AI technologies for monitor-
ing, distribution, and efficient use of electrical power and energy, including re-
newable energy sources, and for consumption prediction in intelligent power
management.

7 Industrial Automation & Robot
Control

Industrial process automation, including robots, programmable logic controllers,
and related control apparatuses such as remote control and fault diagnosis.

8 Remote Monitoring & Control
Systems

Real-time remote monitoring and management technologies for factories, build-
ingmanagement, warehouses, intelligent homes, disastermanagement, and net-
work security.

9 Smart Home & Intelligent
Household Control

Various IoT technologies for the intelligent control of homes and buildings, in-
cluding household appliances, home environments, and smart home integra-
tions, often utilizing wireless communication and monitoring.

10 Intelligent Logistics A combination ofmonitoring, remote control technologies, data acquisition, and
mobile robot technologies for logistics and delivery applications, including sup-
ply chainmanagement, warehouse operations, package tracking, and courier ser-
vices.

11 Autonomous Vehicles & UAVs Developments in unmanned aerial vehicles (UAVs), drones, and autonomous
driving technologies, with an emphasis on vehicle control, navigation, and sen-
sor integration.

12 Parking & Vehicle Space Man-
agement

Networking technologies for parking management, including systems for moni-
toring available spaces and intelligent parking solutions.

13 Vehicle Telematics & Electric
Vehicle Management

Technologies for intra-vehicle informationmanagement, especially in electric ve-
hicles, including aspects of real-timemonitoring, traffic information, and vehicle
diagnostics.

14 Passenger Transportation Technologies for ride-sharing, taxi hailing, and public transportation reserva-
tions using real-time information, electronic ticketing, and route optimization.

Notes: This table provides descriptions of emerging digital technologies ranging from 1 to 14.
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Table A.2: Description of the Emerging Digital Technologies (2/3)

Technology Description

15 Food Ordering & Vending Sys-
tems

Wireless infrastructures, encryption, monitoring, and remote control technolo-
gies for food order management, such as automatic vending, self-service order-
ing, meal preparation, and delivery.

16 Digital Advertising Automated tracing and tagging, and AI technologies for digital advertisements,
including targeted delivery on mobile devices.

17 Electronic Trading and Auc-
tions

Online trading platforms, financial instrument exchanges, and auction mecha-
nisms, focusing on real-time bidding, trading, and market data.

18 Online Shopping Platforms Wireless technologies (e.g., RFID and mobile terminals), encryption (e.g.,
blockchain), and AI technologies for e-commerce transactions, and digital tools
related to the purchase, sale, and display of product information, including rec-
ommendation systems.

19 E-Coupons & Promotion Man-
agement

Data management platforms for electronic coupon distribution, management,
redemption, and associated loyalty programs.

20 Electronic Payments & Finan-
cial Transactions

A combination of wireless (e.g., mobile) and encryption (e.g., blockchain) tech-
nologies for processing electronic payments (e.g., credit card transactions) and
interfacing with financial institutions.

21 Mobile Payments A combination of mobile technologies for processing electronic payments.
22 Gaming & Wagering Systems A combination of user interface and data management technologies for gaming,

both online and physical, including gambling and gaming machines.
23 Digital Authentication Encryption and robotic processing technologies for verifying user identities, se-

curing transactions, and safeguardingdata throughvarious authenticationmech-
anisms, such as biometrics and cryptographic methods.

24 E-Learning A combinationof AI anddatamanagement technologies for digital platforms and
systems in education, including teaching, learning, and classroommanagement.

25 Location-Based Services &
Tracking

Technologies that provide location-based content and services, often relying on
global positioning and navigation systems and related communication technol-
ogy.

26 Voice Communication Technologies focusing on voice communication, including communication pro-
tocols and user interfaces.

27 Electronic Messaging Digital communication methods, infrastructure, and user interfaces for services
such as email and conferences.

28 Workflow Management A combination of AI and network technologies for management applications, in-
cluding workflow automation, recruitment, event scheduling, and building and
property management.

Notes: This table provides descriptions of emerging digital technologies ranging from 15 to 28.
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Table A.3: Description of the Emerging Digital Technologies (3/3)

Technology Description

29 Cloud Storage & Data Security Cloud-based data storage, distributed data management, encryption, and
backup, often integrated with blockchain technology.

30 Information Processing Systems for managing, processing, and delivering data and information across
various domains, potentially including content generation, transmission, and
verification.

31 Cloud Computing Cloud computing and virtual machines, focusing on cloud platforms and re-
source allocation in cloud environments.

32 Recommender Systems Algorithms and systems for providing recommendations and personalized con-
tent delivery based on user behavior, search queries, and similarity metrics.

33 Social Networking & Media
Platforms

User interfaces for online social networking services, content sharing, and rec-
ommendation systems.

34 Digital Media Content Tools and platforms for digital media content creation, management, distribu-
tion, and access.

35 Augmented and Virtual Reality
(AR/VR)

Augmented reality (AR) and virtual reality (VR) models, devices, interfaces, and
experiences, including head-mounted displays and interactions in virtual envi-
ronments.

36 Machine Learning & Neural
Networks

Machine learning training techniques, model architectures, and data processing
for computer vision applications.

37 Medical Imaging & Image Pro-
cessing

Diverse applications for acquiring and analyzing medical images from various
modalities, such as computed tomography (CT), ultrasound, magnetic reso-
nance imaging (MRI), and virtual reality (VR), for purposes including diagnosis,
surgical planning, and the design of prostheses.

38 Health Monitoring Wearable and implantable devices and systems for real-time health monitoring
that track vital signs such as bloodpressure, heart rate, and temperature, coupled
with comprehensive medical data management.

39 Medical Information A combination of data sharing, encryption, and Natural Language Processing
(NLP) technologies for the storage, retrieval, andmanagement ofmedical andpa-
tient information, encompassing electronic medical records, prescription man-
agement, and remote healthcare services.

40 E-Healthcare An integration of data sharing, wireless communication, monitoring, and user
interface technologies for healthcare andhealthmanagement systems, including
those used in hospitals and cloud-based platforms.

Notes: This table provides descriptions of emerging digital technologies ranging from 29 to 40.
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Table A.4: Example of Redundancy Filtering of Industries for Intelligent Vehicular Control De-
vice

Cosine Similarity
Code NACE Industry 𝐶𝑝1

𝑖 𝐶𝑝2
𝑖 𝐶𝑝

𝑖

52.2 Support activities for transportation 0.531 0.454 0.489
49.4 Freight transport by road and removal services 0.371 0.418 0.393
29.1 Manufacture of motor vehicles 0.409 0.371 0.389
27.9 Manufacture of other electrical equipment 0.358 0.375 0.366
30.9 Manufacture of transport equipment n.e.c. 0.452
29.2 Manufacture of bodies (coachwork) for motor vehicles; manufac-

ture of trailers and semi-trailers
0.389

33.1 Repair of fabricated metal products, machinery and equipment 0.379
45.3 Sale of motor vehicle parts and accessories 0.377
49.1 Passenger rail transport, interurban 0.371
47.3 Retail sale of automotive fuel in specialised stores 0.362
26.5 Manufacture of instruments and appliances for measuring, test-

ing and navigation; watches and clocks
0.472

26.3 Manufacture of communication equipment 0.434
26.2 Manufacture of computers and peripheral equipment 0.410
56.1 Restaurants and mobile food service activities 0.392
61.2 Wireless telecommunications activities 0.378
49.3 Other passenger land transport 0.369

Notes: This table presents the redundancy filtering of industries for the Patent ID 201713859U. It displays the cosine similarity of distinct
3-digit NACE Rev.2 industry descriptions with the patent description “Vehicle intelligent logistics control device” (Column 3) and the
function principle “GPS locating module for obtaining position information of transport vehicle through main control chip, RFID reader
for reading RFID tag information, and 4G module connected with server” (Column 4). Industries are ranked according to Column 3
in decreasing order. Cosine similarity scores in Columns 3 and 4 are displayed only for sub-pairs belonging to their respective top 10.
Column 5 shows the composite patent-industry cosine similarity score, which corresponds to the harmonic mean of Columns 3 and 4.
Cosine similarity scores in Column 5 are displayed only for pairs that rank simultaneously in both top 10.
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Table A.5: Example of Redundancy Filtering of Industries for Speech Recognition System

Cosine Similarity
Code NACE Industry 𝐶𝑝1

𝑖 𝐶𝑝2
𝑖 𝐶𝑝

𝑖

26.3 Manufacture of communication equipment 0.256 0.333 0.289
28.2 Manufacture of other general-purpose machinery 0.246 0.344 0.286
82.9 Business support service activities n.e.c. 0.279 0.285 0.282
26.4 Manufacture of consumer electronics 0.250 0.295 0.271
63.9 Other information service activities 0.245 0.269 0.257
62.0 Computer programming, consultancy and related activities 0.276
85.5 Other education 0.250
61.9 Other telecommunications activities 0.225
58.1 Publishing of books, periodicals and other publishing activities 0.224
26.5 Manufacture of instruments and appliances for measuring, test-

ing and navigation; watches and clocks
0.303

28.9 Manufacture of other special-purpose machinery 0.294
72.1 Research and experimental development onnatural sciences and

engineering
0.276

18.2 Reproduction of recorded media 0.265
Notes: This tablepresents the redundancyfilteringof industries for thePatent ID202048118D. It displays thecosine similarityofdistinct 3-
digit NACERev.2 industry descriptionswith the patent description “System for recognizing training speech” (Column 3) and the function
principle “process or which is configured to increment counter associated with word sequences, and train language model of automatic
transcription system using word sequences and counter” (Column 4). Industries are ranked according to Column 3 in decreasing order.
Cosine similarity scores in Columns 3 and 4 are displayed only for sub-pairs belonging to their respective top 10. Column 5 shows the
composite patent-industry cosine similarity score, which corresponds to the harmonic mean of Columns 3 and 4. Cosine similarity
scores in Column 5 are displayed only for pairs that rank simultaneously in both top 10.
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Table A.6: Example of Redundancy Filtering of Occupations for Targeted TV Advertising

Cosine Similarity
Code ISCO Occupation 𝐶𝑝

𝑜1 𝐶𝑝
𝑜2 𝐶𝑝

𝑜

2431 Advertising and marketing professionals 0.413 0.502 0.453
1222 Advertising and public relations managers 0.308 0.420 0.356
3521 Broadcasting and audio-visual technicians 0.274 0.380 0.318
3322 Commercial sales representatives 0.250 0.394 0.306
2434 ICT sales professionals 0.297
7422 ICT installers and servicers 0.282
4227 Survey and market research interviewers 0.279
2656 Announcers on radio, television and other media 0.278
1330 ICT service managers 0.262
3512 ICT user support technicians 0.252
5242 Sales demonstrators 0.396
1420 Retail and wholesale trade managers 0.393
3432 Interior designers and decorators 0.388
2153 Telecommunications engineers 0.374
3323 Buyers 0.358
9520 Street vendors (excluding food) 0.357

Notes: This table presents the redundancy filtering of occupations for the Patent ID 2013B87254 (i.e., “Method for targeting television
advertisement based on profile linked to online device, involves selecting television advertisement to be directed to set-top box based
on profile information pertaining to user or online activity”). It displays the cosine similarity of the patent title with the 4-digit ISCO-08
title (Column 3) and the task with the highest cosine similarity (Column 4). Occupations are ranked according to Column 3 in decreasing
order. Cosine similarity scores in Columns 3 and 4 are displayed only for sub-pairs belonging to their respective top 10. Column 5 shows
the composite patent-occupation cosine similarity score, which corresponds to theharmonicmeanofColumns3 and4. Cosine similarity
scores in Column 5 are displayed only for pairs that rank simultaneously in both top 10.
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Table A.7: Example of Redundancy Filtering of Occupations for Intelligent Vehicular Control
Device

Cosine Similarity
Code ISCO Occupation 𝐶𝑝

𝑜1 𝐶𝑝
𝑜2 𝐶𝑝

𝑜

8322 Car, taxi and van drivers 0.354 0.525 0.423
4323 Transport clerks 0.333 0.440 0.379
9333 Freight handlers 0.333 0.420 0.371
9621 Messengers, package deliverers and luggage porters 0.308 0.412 0.353
8332 Heavy truck and lorry drivers 0.301 0.405 0.345
7422 ICT installers and servicers 0.371
8341 Mobile farm and forestry plant operators 0.332
1330 ICT service managers 0.314
1324 Supply, distribution and related managers 0.298
8160 Food and related products machine operators 0.273
8344 Lifting truck operators 0.496
9329 Manufacturing labourers not elsewhere classified 0.481
4321 Stock clerks 0.420
9520 Street vendors (excluding food) 0.409
8331 Bus and tram drivers 0.405

Notes: This table presents the redundancy filtering of occupations for the Patent ID 201713859U (i.e., “Vehicle intelligent logistics control
device, has GPS locating module for obtaining position information of transport vehicle through main control chip, RFID reader for
reading RFID tag information, and 4G module connected with server”). It displays the cosine similarity of the patent title with the 4-digit
ISCO-08 title (Column 3) and the task with the highest cosine similarity (Column 4). Occupations are ranked according to Column 3
in decreasing order. Cosine similarity scores in Columns 3 and 4 are displayed only for sub-pairs belonging to their respective top 10.
Column 5 shows the composite patent-occupation cosine similarity score, which corresponds to the harmonic mean of Columns 3 and
4. Cosine similarity scores in Column 5 are displayed only for pairs that rank simultaneously in both top 10.
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Table A.8: Example of Redundancy Filtering of Occupations for Speech Recognition System

Cosine Similarity
Code ISCO Occupation 𝐶𝑝

𝑜1 𝐶𝑝
𝑜2 𝐶𝑝

𝑜

4131 Typists and word processing operators 0.309 0.452 0.367
2643 Translators, interpreters and other linguists 0.245 0.379 0.298
4413 Coding, proofreading and related clerks 0.232 0.343 0.277
2266 Audiologists and speech therapists 0.218 0.363 0.273
8153 Sewing machine operators 0.214
7532 Garment and related patternmakers and cutters 0.209
4223 Telephone switchboard operators 0.198
8143 Paper products machine operators 0.197
8131 Chemical products plant and machine operators 0.193
7422 ICT installers and servicers 0.193
4110 General office clerks 0.396
3252 Medical records and health information technicians 0.339
4120 Secretaries (general) 0.329
4132 Data entry clerks 0.324
4311 Accounting and bookkeeping clerks 0.304
2152 Electronics engineers 0.302

Notes: This table presents the redundancy filtering of occupations for the Patent ID 202048118D (i.e., “System for recognizing training
speech, has process orwhich is configured to increment counter associatedwithword sequences, and train languagemodel of automatic
transcription system using word sequences and counter”). It displays the cosine similarity of the patent title with the 4-digit ISCO-08
title (Column 3) and the task with the highest cosine similarity (Column 4). Occupations are ranked according to Column 3 in decreasing
order. Cosine similarity scores in Columns 3 and 4 are displayed only for sub-pairs belonging to their respective top 10. Column 5 shows
the composite patent-occupation cosine similarity score, which corresponds to theharmonicmeanofColumns3 and4. Cosine similarity
scores in Column 5 are displayed only for pairs that rank simultaneously in both top 10.
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Figure A.2: Distribution of Patents across Emerging Digital Technologies

Notes: This figure presents the distribution of patents across emerging digital technologies. The set of patents includes 190,714 Derwent
patents, filed between 2012 and 2021. This patent set constructed by Chaturvedi et al. (2023) comprises the core patents related to digital
innovations, together with the patents that follow their semantic trajectory, that is, the most similar patents filed in subsequent years.
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Figure A.3: Log Distribution of Patent Citations across Emerging Digital Technologies

Notes: This figure presents the log distribution of patent citations across emerging digital technologies.
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Figure A.4: Distribution ofNon-Cited andUndetermined-Count Patents across EmergingDig-
ital Technologies

Notes: This figure presents the distribution of non-cited and undetermined-count patents across emerging digital technologies.
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Figure A.5: Weighted versus Unweighted Yearly Cosine Similarity Scores

Notes: This figure presents the correlation between citation-weighted and unweighted yearly cosine similarity scores for both industries and
occupations. The dashed line is the 45-degree line.

Figure A.6: Semantic Co-Occurrence of Technologies in 3–digit ISCO-08 Occupations

Notes: This figure shows all pairwise semantic-based technology co-occurrences as a correlation matrix, which is symmetric with diagonal
values of 1. The matrix categorizes technologies into blocks, grouping them according to their semantic associations with occupations.
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Table A.9: Comparison of the Exposure Studies

Technology Methodology Exposure Scores
Webb
(2019)

Software refers to computer pro-
grams that execute manually speci-
fied “if-then” rules. A program is con-
sidered software (as opposed to AI)
if every action it performs is prede-
termined by a human. Robots are
defined as “automatically controlled,
reprogrammable, multipurpose ma-
nipulators with three or more pro-
grammable axes, which may be fixed
or mobile for industrial automation”.
AI encompassesmachine learning al-
gorithms, specifically supervised and
reinforcement learning algorithms.

Data: Patents. The author uses a set of
keywords for each technology to retrieve
a patent sample. He applies dependency
parsing on patent titles and O⋆NET task de-
scriptions to extract verb-noun pairs that
represent actions performed by technolo-
gies and occupations, respectively. To im-
prove matching, nouns are aggregated into
broader categories using the WordNet lexi-
cal database. The matching is then estab-
lished between the aggregated verb-noun
pairs of patents (technologies) and O⋆NET
tasks.

An occupation’s ex-
posure score for a
technology reflects the
intensity of patenting
activity in this technol-
ogy related to the tasks
within that occupation.
This measure is agnostic
to substitution or aug-
mentation effects.

Felten et al.
(2021)

AI (10 applications as defined by
EFF): abstract strategy games, real-
time video games, image recogni-
tion, visual question answering, im-
age generation, reading comprehen-
sion, language modeling, translation,
speech recognition, and instrumen-
tal track recognition.

Data: Survey. To estimate exposure scores,
the authors created a crowd-sourced
dataset using survey responses from gig
workers on Amazon’s Mechanical Turk
(mTurk). Participants evaluated the rel-
evance of each AI application to specific
workplace abilities as defined by the Oc-
cupational Information Network (O⋆NET).
These responses generated a relatedness
score between 0 and 1 for each AI ap-
plication and occupational ability. The
exposure score is then adjusted to account
for the breadth of abilities required in an
occupation, ensuring that occupations
with a broader range of abilities are not
over-weighted in exposure.

An occupation’s expo-
sure score indicates how
closely AI applications
relate to the abilities
required for that occu-
pation. This measure is
agnostic to substitution
or augmentation effects.

Frey and
Osborne
(2017)

Computerization is driven by Ma-
chine Learning (ML: including Data
Mining, Machine Vision, Computa-
tional Statistics, and other subfields
of AI) and Mobile Robotics (MR).
These definitions are based on prior
literature, discussions, and expert in-
sights.

Data: Expert Knowledge. Susceptibility to
computerization is manually assessed for
70 occupations based on expert knowledge,
which serves as training data. For the re-
maining 632occupations, theprobability of
computerization is estimated using a Gaus-
sian Process Classifier, considering factors
such as creativity, dexterity, and social intel-
ligence from O⋆NET.

The probability of com-
puterization indicates
the likelihood that a
given occupation could
be automated based on
current technological
capabilities. This prob-
ability depends on the
tasks involved and the
presence of engineering
bottlenecks in automat-
ing those tasks, such as
those requiring creativ-
ity, social intelligence,
or complex perception
and manipulation.

Notes: This table provides summary of the three exposure studies with regard to technologies, methodology, and interpretation of the constructed exposure scores.
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Figure A.7: Correlation of Occupation Exposure with Other Metrics in the Literature

Notes: This figure presents the correlation between occupational exposure scores to emerging digital technologies (column) and other oc-
cupational exposure metrics available in the literature (rows), both measured at the 4-digit ISCO-08 level. Each cell shows the Spearman
correlation ranging from -1 to 1. Correlations with a p-value above 0.05 are transparent. Exposure scores in the literature are from Felten
et al. (2021), Webb (2019), and Frey and Osborne (2017) and are converted into 4-digit ISCO-08 exposure scores using several crosswalks.
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B Descriptive Statistics Appendix

In this Appendix, weprovide additional descriptive statistics on the exposure of industries and
occupations to emerging digital technologies.

B.1 Top-30Most Exposed

Tables B.1 and B.2 display the top 30 exposed 4-digit ISCO-08 occupations and 3-digit NACE
Rev.2 industries, respectively, according to their average exposure to all emerging digital tech-
nologies, denoted as

𝑋𝑜 = 1
40 ∑

𝑘
𝑋𝑘

𝑜 ,

where 𝑋𝑘
𝑜 is the exposure of occupation 𝑜 to technology 𝑘 given by Equation (13) and

𝑋𝑖 = 1
40 ∑

𝑘
𝑋𝑘

𝑖 ,

where 𝑋𝑘
𝑖 is the exposure of industry 𝑖 to technology 𝑘 also given by Equation (13). Tables also

include their top-3 concentration ratio (CR3) expressed in percent.

B.2 Exposure Scores at the 2-Digit Level

Figures B.1 and B.2 present the exposure of 2-digit ISCO-08 occupations and 2-digit NACE
Rev.2 industries, respectively, to the 40 emerging digital technologies.
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Table B.1: Top 30 Exposed 4-digit ISCO-08 Occupations

Code ISCO Occupation 𝑋𝑜 CR3𝑜

3513 Computer network and systems technicians 4.41 11.7
3511 ICT operations technicians 4.32 12.4
1330 ICT service managers 4.10 13.1
2523 Computer network professionals 3.98 12.7
3512 ICT user support technicians 3.86 12.4
8132 Photographic products machine operators 3.66 15.9
4223 Telephone switchboard operators 3.56 14.6
7422 ICT installers and servicers 3.36 14.3
3514 Web technicians 3.25 13.3
4132 Data entry clerks 3.11 15.6
9623 Meter readers and vending-machine collectors 3.09 16.9
3133 Chemical processing plant controllers 3.04 18.0
8322 Car, taxi and van drivers 2.68 21.8
2153 Telecommunications engineers 2.57 17.1
1324 Supply, distribution and related managers 2.55 19.8
9621 Messengers, package deliverers and luggage porters 2.49 19.7
2513 Web and multimedia developers 2.44 19.5
3311 Securities and finance dealers and brokers 2.44 22.7
2521 Database designers and administrators 2.43 17.8
3252 Medical records and health information technicians 2.38 25.3
8183 Packing, bottling and labelling machine operators 2.36 18.0
2622 Librarians and related information professionals 2.35 20.9
4323 Transport clerks 2.23 24.5
8312 Railway brake, signal and switch operators 2.20 21.0
5244 Contact centre salespersons 2.17 20.7
3522 Telecommunications engineering technicians 2.13 19.4
2529 Database and network professionals n.e.c. 2.13 20.7
3135 Metal production process controllers 2.03 20.2
3114 Electronics engineering technicians 1.98 19.7
2522 Systems administrators 1.96 17.6

Notes: This table presents the top 30 4-digit ISCO-08 occupations ranked by exposure to all emerging dig-
ital technologies. Columns (from left to right) correspond to occupation code, occupation title, average
exposure to emerging digital technologies, top-3 concentration ratio which represents the sum of top-3
technology exposure shares (in percent).
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Table B.2: Top 30 Exposed 3-digit NACE Rev.2 Industries

Code NACE Industry 𝑋𝑖 CR3𝑖

26.3 Manufacture of communication equipment 6.28 9.7
26.2 Manufacture of computers and peripheral equipment 6.19 9.5
63.1 Data processing, hosting and related activities 5.88 10.0
62.0 Computer programming, consultancy and related activities 5.28 10.6
26.5 Manufacture of instruments and appliances for measuring 4.88 11.8
82.9 Business support service activities n.e.c. 4.83 11.5
28.2 Manufacture of other general-purpose machinery 4.71 12.7
63.9 Other information service activities 4.70 11.8
61.2 Wireless telecommunications activities 4.67 11.7
61.9 Other telecommunications activities 4.43 12.2
33.1 Repair of fabricated metal products, machinery and equipment 4.22 12.1
95.1 Repair of computers and communication equipment 4.11 12.2
79.9 Other reservation service and related activities 3.96 13.4
80.2 Security systems service activities 3.83 14.2
52.2 Support activities for transportation 3.59 16.0
27.9 Manufacture of other electrical equipment 3.50 15.1
61.1 Wired telecommunications activities 3.50 13.8
47.4 Retail sale of information and communication equipment 3.35 15.2
26.4 Manufacture of consumer electronics 3.30 13.1
28.9 Manufacture of other special-purpose machinery 3.26 18.3
27.1 Manufacture of electric motors, generators and transformers 2.95 18.3
82.2 Activities of call centres 2.81 16.2
80.1 Private security activities 2.78 16.6
26.1 Manufacture of electronic components and boards 2.76 16.8
17.2 Manufacture of articles of paper and paperboard 2.73 14.8
58.1 Publishing of books, periodicals and other publishing activities 2.69 17.4
27.3 Manufacture of wiring and wiring devices 2.38 17.7
18.2 Reproduction of recorded media 2.31 20.0
33.2 Installation of industrial machinery and equipment 2.30 20.6
82.1 Office administrative and support activities 2.14 18.8

Notes: This table presents the top 30 3-digit NACERev.2 industries ranked by exposure to all emerging digital technologies.
Columns (from left to right) correspond to industry code, industry title, average exposure to emerging digital technologies,
top-3 concentration ratio which represents the sum of top-3 technology exposure shares (in percent).
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Figure B.1: Occupation Exposure by Emerging Digital Technologies (2-digit ISCO-08)

Notes: Each cell shows the exposure of a 2-digit ISCO-08 occupation (row) to a given emerging digital technology (column). Exposure scores
below the 80th percentile (0-2.68) are transparent, whereas the four other groups represent respectively the 80th (2.68-3.83), 90th (3.83-4.76),
95th (4.76-5.91), and 99th (5.91-6.72) percentile of the distribution.
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Figure B.2: Industry Exposure by Emerging Digital Technologies (2-digit NACE Rev.2)

Notes: Each cell shows the exposure of a 2-digit NACE Rev.2 industry (row) to a given emerging digital technology (column). Exposure scores
below the 80th percentile (0-2.92) are transparent, whereas the four other groups represent respectively the 80th (2.92-4.50), 90th (4.50-5.47),
95th (5.47-6.79), and 99th (6.79-8.01) percentile of the distribution.
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C Employment Impact Appendix

In this Appendix, we provide additional information on the regional employment analysis in
Section 5.

C.1 Employment Shares

Table C.1 shows the employment shares of our 10 sectors across European regions in 2010.
The three largest sectors are Market Services (G-I), with an average of 23.8% of employment;
the Public Sector (O-Q), at 23.7%; and Industry (B-E), averaging 17.9%. Following these, Agri-
culture (A), Construction (F), and Professional, Scientific, Technical, Administration, and Sup-
port Services (M-N) each contribute between 6% and 9% to employment. The remaining four
sectors collectively account for 11.4% of employment. Notably, the Information and Commu-
nication sector (J), crucial for digital technologies, represents only 2.6% of average regional
employment—similar to the Financial and Insurance sector (K), which averages 2.8%.

Table C.1: Average Employment Share by Sector of Activities in 2010

NACE Sector Mean SD
A Agriculture 0.068 0.010
B-E Industry, excluding Construction 0.179 0.006
F Construction 0.076 0.000
G-I Market Services, excluding Information and Communication 0.238 0.001
J Information and Communication 0.026 0.000
K Financial and Insurance Activities 0.028 0.000
L Real Estate Activities 0.007 0.000
M-N Professional, Scientific, Technical, Administration and Support Service Activities 0.083 0.001
O-Q Public Administration, Defence, Education, Human Health and Social Work Activities 0.237 0.004
R-U Other Services 0.053 0.000
Notes: This table presents the employment share by sector of activities averaged across all the European regions in 2010. Regions are weighted by pop-
ulation in 2010. The first column indicates the 1-digit NACE codes, the second column is the name of the NACE sector, the third column is the average
employment share in 2010, and the fourth column gives the standard errors.

C.2 Employment Change and Exposure

Figure C.1 shows the positive correlation between the change in employment and the expo-
sure to all emerging digital technology across 1-digit grouped industries in Europe.

C.3 Placebo Estimates

To further validate the shift-share approach, we conduct a placebo analysis by estimating the
effect of regional exposure to emerging digital technologies on the change in the employment-
to-population ratio during the pre-period (2002–2009). The results are presented in Table C.2.
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Figure C.1: Employment Change and Exposure to All Emerging Digital Technologies in 1-digit
NACE (Grouped) Industries in Europe between 2012 and 2019

Notes: This figure shows the positive relationship between employment change (2012–2019, in percentage) and exposure to emerging digital
technologies across 1-digit (grouped) industries at the European level. The dashed line represents the unweighted regression, while the solid
line shows the regression weighted by sector employment size in 2010.

We find no effect of regional exposure in the pre-period for any demographic group, ex-
cept for high-skilled workers. This significant result is important, as high-skilled workers are
thosewho develop and produce emerging digital technologies. Thepositive estimate suggests
reverse causality, indicating that employment growth among high-skilled workers—who are
pivotal to these technologies—is higher in regions with greater exposure.

The placebo analysis is based on the pre-period (2002–2009), but employment data for
2002 are unavailable in 62 regions, requiring us to restrict the sample to 258 regions. Table C.3
presentsbaseline specificationestimates for this restricted sample, as inTable4. Theestimates
are similar to those in Table 4, suggesting that the placebo analysis results are not influenced
by the exclusion of specific regions.
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Table C.2: Placebo Estimates of the Effect of Emerging Digital Technologies on Regional Employment by Demographic Groups

Δ Emp-to-pop. ratio (2002-2009) × 100
All Gender Age Skill

Total Female Male Y15-24 Y25-64 Low Mid High
Exposure to Emerging Technologies −0.080 −0.012 −0.068 0.001 −0.090 0.078 −0.058 0.257∗∗∗

(0.179) (0.105) (0.078) (0.039) (0.144) (0.104) (0.046) (0.071)
Country FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Demographics ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Industry share ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Emp-to-pop. ratio in 2012 50.93 22.25 28.69 5.70 45.23 14.22 24.52 11.39
Change (in %) −0.16 −0.05 −0.24 0.02 −0.20 0.55 −0.23 2.26
R2 0.717 0.713 0.768 0.676 0.696 0.756 0.768 0.630
Adj. R2 0.672 0.668 0.732 0.625 0.649 0.717 0.731 0.571
Num. obs. 258 258 258 258 258 258 258 258
Notes: This table presents the placebo estimates of exposure to emerging digital technologies on regional employment by demographic groups. It presents the coeffi-
cients measuring the effect of regional exposure to emerging technologies, constructed as shift-shares and standardized, on changes in the employment-to-population
ratio between 2002 and 2009 in European regions, expressed in percentage points, for all workers, female and male workers, young (aged 15-24) and mature (aged
25-64) workers, and low-, middle-, and high-skilled workers. Regressions are weighted by population in 2010. All columns include country fixed effects; demographics
controls in 2010, including the logarithmof population, the proportion of females, the proportion of the population aged over 65, the proportions of the populationwith
secondary and tertiary education levels; and the share of employment in the industry sector. ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses
are derived following the AKM0 inference procedure from Adão et al. (2019).
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Table C.3: Effect of Emerging Digital Technologies on Regional Employment by Demographic Groups (Placebo Sample)

Δ Emp-to-pop. ratio (2012-2019) × 100
All Gender Age Skill

Total Female Male Y15-24 Y25-64 Low Mid High
Exposure to Emerging Technologies 0.931∗∗∗ 0.547∗∗∗ 0.384∗∗∗ 0.055∗∗ 0.878∗∗∗ 0.041 −0.478∗∗∗ 1.374∗∗∗

(0.085) (0.071) (0.041) (0.033) (0.101) (0.090) (0.053) (0.027)
Country FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Demographics ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Industry share ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Emp-to-pop. ratio in 2012 50.93 22.25 28.69 5.70 45.23 14.22 24.52 11.39
Change (in %) 1.83 2.46 1.34 0.97 1.94 0.29 −1.95 12.06
R2 0.795 0.717 0.757 0.428 0.778 0.793 0.788 0.734
Adj. R2 0.762 0.673 0.718 0.338 0.743 0.761 0.754 0.692
Num. obs. 258 258 258 258 258 258 258 258
Notes: This table presents the estimates of exposure to emerging digital technologies on regional employment by demographic groups. It presents the coefficients measuring the effect
of regional exposure to emerging technologies, constructed as shift-shares and standardized, on changes in the employment-to-population ratio between 2012 and 2019 in European
regions, expressed in percentage points, for all workers, female and male workers, young (aged 15-24) and mature (aged 25-64) workers, and low-, middle-, and high-skilled workers.
Regressions are weighted by population in 2010. All columns include country fixed effects; demographics controls in 2010, including the logarithm of population, the proportion of
females, the proportion of the population aged over 65, the proportions of the population with secondary and tertiary education levels; and the share of employment in the industry
sector. ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses are derived following the AKM0 inference procedure from Adão et al. (2019).
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C.4 Assessing the Impact of Emerging Digital Technology Families

We conduct the analysis at the technology family level, using a shift-share design to calculate
regional exposure to technology family 𝑋𝐾

𝑟 , defined as:

𝑋𝐾
𝑟 = ∑

𝑗
𝑙𝑟𝑗𝑋𝐾

𝑗 ,

where 𝑙𝑟𝑗 is the employment share of sector 𝑗 in region 𝑟, and 𝑋𝐾
𝑗 is the exposure of sector 𝑗 to

technology family 𝐾, which is computed as the average sectoral exposure across technologies
within the family: 𝑋𝐾

𝑗 = 1
|𝐾| ∑𝑘∈𝐾 𝑋𝑘

𝑗 .
Figure C.2 presents the geographic distribution of exposure to the 9 families of emerging

digital technology. Regional exposure is standardized at the family level to facilitate compar-
isons and account for variations in exposure magnitudes across different technology families.

Exposure to emerging digital technologies exhibits significant variation across European
regions and between technology families. For instance, regions with the highest exposure to
tangible technologies, suchas 3DPrinting andEmbeddedSystems, arepredominantly located
in Central and Eastern European countries, as well as in certain areas of Southern Europe, in-
cluding Northern Portugal and Turkey. These are the regions with the highest manufacturing
shares. Conversely,Western andNorthern European countries show greater exposure to Com-
puter Vision and HealthTech, which correlates with their more service-oriented economies
and digitized healthcare systems.

Furthermore, spatial differences in exposure are also evident within countries, character-
ized by disparities between rural and urban areas. Exposure to E-Commerce, Payment Sys-
tems, and Digital Services is predominantly concentrated in capital cities and financial hubs.
In contrast, exposure to Smart Mobility and Food Services is relatively more pronounced in
the rural regions of Western countries, such as France, Italy, Spain, and the United Kingdom.

We estimate the impact of the regional exposure to a specific emerging technology family
on the employment-to-population ratio using an empirical specification analogous to that of
Equation (15). However, instead of using the exposure to all technologies 𝑋𝑟, we focus on the
regional exposure to a particular family 𝑋𝐾

𝑟 . More specifically, the empirical specification is:

Δ𝑌𝑟 = 𝛼+𝛽𝐾𝑋𝐾
𝑟 +𝛾𝐾𝑋−𝐾

𝑟 +𝑍𝛿 +𝜙𝑐(𝑟) +𝑢𝑟, (17)

where 𝑋−𝐾
𝑟 is regional exposure to all other emerging digital technologies. This latter variable

is constructed as a shift–share variable, similar to that of Equation (14), but specifically exclud-
ing the exposure from the technology family of interest 𝐾. For interpretability, we standardize
our variable of interest 𝑋𝐾

𝑟 .
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Figure C.2: Geographic Distribution of Regional Exposure to Families of Emerging Digital
Technologies across Europe from 2012 to 2019

Notes: This figure illustrates the geographic distributionof exposure to families of emergingdigital technologies forNUTS-2 regions. Regional
exposure is constructedas a shift-share variableby interacting the sectoral employment shares in thebaseline year 2010andsectoral exposure
to these technology families from 2012 to 2019. Regions are categorized into deciles. Regions are shaded according to their exposure level,
with the legend indicating the range of exposure. Areas not applicable (NA) are marked in grey.

Our estimated coefficient of interest, denoted as ̂𝛽𝐾, represents the employment effect,
measured in pp. change, of a one-standard-deviation increase in the regional exposure to
a specific emerging technology family 𝐾, conditional on the regional exposure to all other
emerging digital technologies. This empirical approach allows us to identify the causal effect
of technology family 𝐾 on employment at the regional level, net of the overall effect of emerg-
ing digital technologies. Our approach is consistent with methodologies applied in the recent
literature, which assess the impact of a particular technology, such as robots, on employment,
while also accounting for exposure to contemporaneous technologies, such as ICT (see, for
example, Acemoglu and Restrepo 2020; Dauth et al. 2021).
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Figure C.3: Employment Effect of Emerging Digital Technology Families

Notes: This figure the coefficients measuring the effect of regional exposure to emerging digital technology families, constructed as shift-
shares and standardized, on changes in the employment-to-population ratio, expressed in percentage points (pp.), between 2012 and 2019
in European regions, for all workers, female and male workers, young (aged 15-24) and mature (aged 25-64) workers, and low-, middle-, and
high-skilled workers. The confidence intervals are reported at the 5% significance level using the AKM0 inference procedure from Adão et al.
(2019). Regressions are weighted by population in 2010 and the set of control variables include country fixed effects, demographics controls
in 2010 (including the logarithm of population, the proportion of females, the proportion of the population aged over 65, the proportions of
the population with secondary and tertiary education levels), the share of employment in the industry sector, and the regional exposure to
all other emerging digital technologies, also constructed as a shift-share.

Figure C.3 displays the estimated coefficients, along with their corresponding 95% AKM0
confidence intervals, for the employment effects of emerging digital technology families for
the different demographic groups. The figure is interpreted as follows. Each panel corre-
sponds to a technology family. The vertical axis lists the demographic groups, while the hori-
zontal axis depicts the estimated coefficients.

Smart Mobility has a positive and significant impact on total employment. This positive
impact is driven by the increase in employment of low- and middle-skilled workers as well as
female and mature workers. We find no effect on young workers and male workers. However,
we find a negative impact of Smart Mobility on high-skilled workers.

HealthTech also has a positive and significant impact on total employment. Similar to the
former technology, the employment of low-skilled, female, andmatureworkers increaseswith
exposure to HealthTech. Additionally, male and young workers are also positively impacted.
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While we find no effect on middle-skilled workers, we find a negative impact on high-skilled
workers.

WhilewedonotfindanyeffectofEmbeddedSystemson theoverall employment-to-population
ratio, we find that regional exposure to them reduces employment among young, male, and
low-skilled workers. The opposite signs for low- and high-skilled workers (significant at the
10% level) suggest that Embedded Systems are skilled-biased. The 10% significance level re-
flects the heterogeneity in impacts across individual technologies.

We find no effect on the total employment-to-population ratio for the other technology
families. However, we observe positive employment effects on specific demographic groups.
Formaleworkers, we find a positive effect of Payment Systems andDigital Services. For young
workers, we find positive effects of Computer Vision and Digital Services.

Conversely, some technology families have a negative impact on certain demographic
groups. FoodServicesharmtheemploymentofmale andyoungworkers,whereasE-Commerce
reduces theemploymentof youngand low-skilledworkers, aswell as femaleworkers (although
significant at the 10% level). Lastly, we find a negative and significant effect of 3D Printing on
low-skilled workers.

C.5 Geographic Distribution of Regional Exposure to Individual Emerging Digital Tech-
nologies

FiguresC.4 toC.8present thegeographicdistributionof regional exposure to individual emerg-
ing digital technologies, constructed as a shift-share. Regional exposure scores are standard-
ized to allow comparability between technologies.

C.6 Individual Effects of Emerging Digital Technologies

Figures C.9 to C.13 present the effect of individual emerging digital technologies.

70



Figure C.4: Geographic Distribution of Exposure to Emerging Digital Technologies (1/5)

Notes: This figure illustrates the geographic distribution of exposure to emerging digital technologies for NUTS-2 regions. Regional exposure
is constructed as a shift-share variable by interacting the sectoral employment shares in the baseline year 2010 and sectoral exposure to these
technologies from 2012 to 2019. Regions are categorized into deciles. Regions are shaded according to their exposure level, with the legend
indicating the range of exposure. Areas not applicable (NA) are marked in grey.
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Figure C.5: Geographic Distribution of Exposure to Emerging Digital Technologies (2/5)

Notes: This figure illustrates the geographic distribution of exposure to emerging digital technologies for NUTS-2 regions. Regional exposure
is constructed as a shift-share variable by interacting the sectoral employment shares in the baseline year 2010 and sectoral exposure to these
technologies from 2012 to 2019. Regions are categorized into deciles. Regions are shaded according to their exposure level, with the legend
indicating the range of exposure. Areas not applicable (NA) are marked in grey.
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Figure C.6: Geographic Distribution of Exposure to Emerging Digital Technologies (3/5)

Notes: This figure illustrates the geographic distribution of exposure to emerging digital technologies for NUTS-2 regions. Regional exposure
is constructed as a shift-share variable by interacting the sectoral employment shares in the baseline year 2010 and sectoral exposure to these
technologies from 2012 to 2019. Regions are categorized into deciles. Regions are shaded according to their exposure level, with the legend
indicating the range of exposure. Areas not applicable (NA) are marked in grey.
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Figure C.7: Geographic Distribution of Exposure to Emerging Digital Technologies (4/5)

Notes: This figure illustrates the geographic distribution of exposure to emerging digital technologies for NUTS-2 regions. Regional exposure
is constructed as a shift-share variable by interacting the sectoral employment shares in the baseline year 2010 and sectoral exposure to these
technologies from 2012 to 2019. Regions are categorized into deciles. Regions are shaded according to their exposure level, with the legend
indicating the range of exposure. Areas not applicable (NA) are marked in grey.
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Figure C.8: Geographic Distribution of Exposure to Emerging Digital Technologies (5/5)

Notes: This figure illustrates the geographic distribution of exposure to emerging digital technologies for NUTS-2 regions. Regional exposure
is constructed as a shift-share variable by interacting the sectoral employment shares in the baseline year 2010 and sectoral exposure to these
technologies from 2012 to 2019. Regions are categorized into deciles. Regions are shaded according to their exposure level, with the legend
indicating the range of exposure. Areas not applicable (NA) are marked in grey.
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Figure C.9: Employment Effect of Embedded Systems

Notes: This figure presents the coefficients measuring the effect of regional exposure to emerging digital technology, constructed as shift-
shares and standardized, on changes in the employment-to-population ratio, expressed in percentage points (pp.), between 2012 and 2019
in European regions, for all workers, female and male workers, young (aged 15-24) and mature (aged 25-64) workers, and low-, middle-, and
high-skilled workers. Each panel represents a technology. The confidence intervals are reported at the 5% significance level using the AKM0
inference procedure from Adão et al. (2019). Regressions are weighted by population in 2010 and the set of control variables include country
fixed effects, the sumof exposure shares as a control, demographics controls in 2010 (including the logarithmofpopulation, theproportionof
females, the proportion of the population aged over 65, the proportions of the population with secondary and tertiary education levels), the
share of employment in the industry sector, and the regional exposure to all other emerging digital technologies within the same technology
family and outside, both also constructed as shift-shares.
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Figure C.10: Employment Effect of Smart Mobility

Notes: This figure presents the coefficients measuring the effect of regional exposure to emerging digital technology, constructed as shift-
shares and standardized, on changes in the employment-to-population ratio, expressed in percentage points (pp.), between 2012 and 2019
in European regions, for all workers, female and male workers, young (aged 15-24) and mature (aged 25-64) workers, and low-, middle-, and
high-skilled workers. Each panel represents a technology. The confidence intervals are reported at the 5% significance level using the AKM0
inference procedure from Adão et al. (2019). Regressions are weighted by population in 2010 and the set of control variables include country
fixed effects, the sumof exposure shares as a control, demographics controls in 2010 (including the logarithmofpopulation, theproportionof
females, the proportion of the population aged over 65, the proportions of the population with secondary and tertiary education levels), the
share of employment in the industry sector, and the regional exposure to all other emerging digital technologies within the same technology
family and outside, both also constructed as shift-shares.

77



Figure C.11: Employment Effect of E-Commerce and Payment Systems

Notes: This figure presents the coefficients measuring the effect of regional exposure to emerging digital technology, constructed as shift-
shares and standardized, on changes in the employment-to-population ratio, expressed in percentage points (pp.), between 2012 and 2019
in European regions, for all workers, female and male workers, young (aged 15-24) and mature (aged 25-64) workers, and low-, middle-, and
high-skilled workers. Each panel represents a technology. The confidence intervals are reported at the 5% significance level using the AKM0
inference procedure from Adão et al. (2019). Regressions are weighted by population in 2010 and the set of control variables include country
fixed effects, the sumof exposure shares as a control, demographics controls in 2010 (including the logarithmofpopulation, theproportionof
females, the proportion of the population aged over 65, the proportions of the population with secondary and tertiary education levels), the
share of employment in the industry sector, and the regional exposure to all other emerging digital technologies within the same technology
family and outside, both also constructed as shift-shares.
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Figure C.12: Employment Effect of Digital Services

Notes: This figure presents the coefficients measuring the effect of regional exposure to emerging digital technology, constructed as shift-
shares and standardized, on changes in the employment-to-population ratio, expressed in percentage points (pp.), between 2012 and 2019
in European regions, for all workers, female and male workers, young (aged 15-24) and mature (aged 25-64) workers, and low-, middle-
, and high-skilled workers. Each panel represents a technology. The confidence intervals are reported at the 5% significance level using
the AKM0 inference procedure from Adão et al. (2019). Regressions are weighted by population in 2010 and the set of control variables
include country fixed effects, the sum of exposure shares as a control, demographics controls in 2010 (including the logarithm of population,
the proportion of females, the proportion of the population aged over 65, the proportions of the population with secondary and tertiary
education levels), the share of employment in the industry sector, and the regional exposure to all other emerging digital technologies within
the same technology family and outside, both also constructed as shift-shares. Confidence intervals for Digital Authentification are not
displayed since the standard errors cannot be computed under the AKM0 inference procedure.
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Figure C.13: Employment Effect of 3D Printing, Computer Vision, and HealthTech

Notes: This figure presents the coefficients measuring the effect of regional exposure to emerging digital technology, constructed as shift-
shares and standardized, on changes in the employment-to-population ratio, expressed in percentage points (pp.), between 2012 and 2019
in European regions, for all workers, female and male workers, young (aged 15-24) and mature (aged 25-64) workers, and low-, middle-, and
high-skilled workers. Each panel represents a technology. The confidence intervals are reported at the 5% significance level using the AKM0
inference procedure from Adão et al. (2019). Regressions are weighted by population in 2010 and the set of control variables include country
fixed effects, the sumof exposure shares as a control, demographics controls in 2010 (including the logarithmofpopulation, theproportionof
females, the proportion of the population aged over 65, the proportions of the population with secondary and tertiary education levels), the
share of employment in the industry sector, and the regional exposure to all other emerging digital technologies within the same technology
family and outside, both also constructed as shift-shares.

80


	Introduction
	Emerging Digital Technologies
	Semantic–based Exposure
	Industry Cosine Similarity Scores
	Occupation Cosine Similarity Scores
	Aggregation by Technology
	Exposure Scores

	Descriptive Analysis
	Occupation Exposure to Emerging Digital Technologies
	Industry Exposure to Emerging Digital Technologies

	Impact on Employment
	Overall Impact of Emerging Digital Technologies
	Disentangling the Individual Effects of Emerging Digital Technologies

	Conclusion
	Appendices
	Data Appendix
	Patent Corpus Construction
	Description of Emerging Digital Technologies
	Manual Exclusions
	Redundancy Filtering Examples
	Distribution of Patents and Citation-based Weighting Scheme
	Technology Co-Occurrence
	Exposure Scores at Higher Levels of Aggregation
	Comparing Exposure Scores with Other Metrics

	Descriptive Statistics Appendix
	Top-30 Most Exposed
	Exposure Scores at the 2-Digit Level

	Employment Impact Appendix
	Employment Shares
	Employment Change and Exposure
	Placebo Estimates
	Assessing the Impact of Emerging Digital Technology Families
	Geographic Distribution of Regional Exposure to Individual Emerging Digital Technologies
	Individual Effects of Emerging Digital Technologies



