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Abstract
This paper estimates industry and occupation exposure to a comprehensive set of emerg-
ing digital technologies and assesses their impact on European regional employment. Us-
ing a novel, scalable methodology based on advanced natural language processing tech-
niques (sentence transformers), wemeasure technological exposure using semantic simi-
laritybetweenpatents andstandardized international classifications. Usingan instrumental-
variable shift-share approach, we find that higher regional exposure yields net employ-
ment gains. Explicitly accounting for complementarities betweendigital technologies, we
estimate their individual effects andclassify technologies as labor-savingor labor-augmenting,
based on their impacts on aggregate employment. We identify distinct patterns of techno-
logical impacts across different skill groups, and we rationalize them within a task-based
theoretical framework. Ourfindings highlight that focusingnarrowly on specific technolo-
gies such as AI or robots, without accounting for complementarities across the broader
digital technology landscape, can significantly understate the broader, positive effects of
digital transformation on employment.
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1 Introduction
The past decade has seen rapid progress in digital technologies, such as artificial intelligence
(AI), augmented and virtual reality, autonomous vehicles, drones, mobile robots, the Internet
of Things (IoT), 3D printing, and blockchain. These technological advances have the poten-
tial to displace all types of workers, including even high-skilled ones. They are fundamentally
reshaping economic production processes and have potentially profound implications for la-
bor markets. While an extensive body of literature examines employment effects associated
with established digital technologies—such as Information and Communications Technolo-
gies (ICTs) and industrial robots¹—relatively little is known about the employment impacts of
this broader set of emerging digital innovations.

This gap in the literature primarily stems from the inherent difficulty in systematically
measuring the relevanceof specific technologies forparticular occupationsor industries. Con-
sequently, existing metrics capturing worker and industry exposure to emerging digital tech-
nologies provide either coarse or partial coverage of the complex digital transformation. In
particular, existing measures either narrowly target specific technologies—often limited to
particular applications of AI—or aggregate diverse technologies into broad automation in-
dices.² A finer understanding of these heterogeneous impacts is also essential for innovation
policy, enabling policymakers to steer support toward technologies that lift productivity while
safeguarding employment opportunities. Furthermore, most existing evidence derives exclu-
sively from theUS, raising concerns about generalizability to other institutional andeconomic
contexts.³

This measurement challenge also complicates the economic analysis of technological im-
pacts on employment. In the absence of precise exposure metrics, it is difficult to isolate the
individual contributions of specific digital technologies to observed labor market outcomes.
Many emerging technologies exhibit complementarities, leading to their simultaneous adop-
tion. Ignoring these complementarities risks significantly biasing estimates of each technol-
ogy’s distinct employment effects and thus misinforming economic policy discussions about
technological change and labor market dynamics.

This paper addresses these gaps by providing a comprehensive analysis of how emerg-
¹See, among others, Autor et al. (1998), Autor et al. (2003), Autor et al. (2006), Goos andManning (2007), Goos

et al. (2009, 2014), Michaels et al. (2014), and Akerman et al. (2015) for ICT-related technological change; and
Graetz and Michaels (2018), Acemoglu and Restrepo (2020), Vries et al. (2020), Aksoy et al. (2021), Dauth et al.
(2021), Aghion et al. (2023), Adachi et al. (2024), and Bonfiglioli et al. (2024) for industrial automation and robots.

²See Felten et al. (2018, 2021),Webb (2019), Alekseeva et al. (2021), and Acemoglu et al. (2022b) for AI-specific
exposure metrics; also see Mann and Püttmann (2023), Autor et al. (2024), and Kogan et al. (2024) for broader
automation measures.

³A notable exception is Albanesi et al. (2023), who examine labor market exposure to AI and software in 16
European countries, albeit using exposuremetrics originally developed for theUS (Felten et al. 2018,Webb2019).
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ing digital technologies affect employment. First, we estimate the exposure of industries and
occupations to a wide range of digital technologies introduced over the past decade. Lever-
aging advanced Natural Language Processing (NLP) tools—specifically sentence transformer
models—we introduce a novel, systematic, and scalable approach that quantifies technologi-
cal relevance based on semantic similarity between patent descriptions and international in-
dustry and occupation classifications. Second, we use these measures in an instrumental-
variable shift-share framework to estimate the employment effects of emerging digital tech-
nologies across European regions from2012 to 2019, explicitly accounting for complementari-
ties among technologies. Third,weclassify these technologies into labor-saving, labor-neutral,
and labor-augmenting categories, based on their impacts on aggregate employment. We iden-
tify distinct patterns of effects across different skill groups, and we rationalize these empirical
findings within a task-based theoretical framework.

Webegin by classifying patents into distinct technologies based on the semantic similarity
of their descriptive titles. Specifically, we use the sample of core emerging digital technology
patents from Chaturvedi et al. (2023), comprising innovations filed between 2012 and 2021
that are pivotal for the current and forthcoming development of digital technologies. To sys-
tematically quantify semantic content, we transform patent titles into numerical vector rep-
resentations, or embeddings,⁴ using the pre-trained sentence transformer model all–mpnet–
base–v2 (Reimers andGurevych 2019; Song et al. 2020).⁵ Applying k-means clustering to these
embeddings yields 40 distinct emerging digital technologies, each comprising semantically re-
lated patents.

Next, wemeasure the exposure of industries and occupations to these technologies based
on the semantic correspondence between patents and standardized descriptions from inter-
national classification systems. For each patent–industry and patent–occupation pair, we cal-
culate cosine similarity scores, which quantify the semantic proximity between the texts. To
enhance accuracy and relevance, we implement a filtering procedure that retains only highly
relevant pairings. Subsequently, we aggregate these refined similarity scores from the patent
level to the technologyclusters, usingacitation-weightedapproach to reflectdifferential patent
importance.

Our resulting exposure measure captures the relevance of a specific technology to a given
industry or occupation. For industries, relevance corresponds to the potential incorporation

⁴Text embedding refers to the numerical representation of textual information (words, sentences, or docu-
ments) usingNLP techniques. See Gentzkow et al. (2019) and Ash andHansen (2023) for comprehensive surveys
of NLP applications in economics.

⁵Sentence transformers constitute a deep neural network architecture designed to capture contextual mean-
ing within text, thereby producing robust vector embeddings. The model all-mpnet-base-v2 has been trained on
extensive datasets, including academic texts, Wikipedia articles, and Stack Exchange posts—achieving state-of-
the-art performance on sentence similarity benchmarks.

2



of technology into production processes or its capability to enhance output. For occupations,
it reflects the technology’s significance in performing tasks. Importantly, our metrics are in-
tentionally neutral regarding whether technologies serve as substitutes or complements to
labor. Instead, we explicitly investigate these relationships empirically in the second part of
the paper.

We thenestimate thecausal effectsof emergingdigital technologiesonemploymentacross
320NUTS-2 regions in 32 European countries for the period 2012–2019. Initially, we assess the
aggregate impact of these technologies on regional employment-to-population ratios. Addi-
tionally, we disaggregate our analysis by demographic and skill characteristics, specifically ex-
amining differential effects by gender, age groups, and educational attainment levels, as well
as by industries.

Toaddress endogeneity concerns,weusean instrumental variable shift-sharedesign,where
industry-level exposure to digital technologies for the period 2012–2019 serves as the shock,
interacted with baseline regional employment shares from 2010. Our identification strategy
rests on thequasi-randomassignmentof global technological shocks, assuming that thedevel-
opment of emerging digital technologies occurs largely independently of local European labor
market dynamics. To further reinforce identification, we recalculate industry-level exposure
scores excluding patents originating from Europe, ensuring quasi-exogeneity of shocks rela-
tive to regional employment fluctuations. We also assume that regions with higher exposure
to emerging digital technologies do not systematically experience different unobserved labor
market shocks.⁶

Subsequently, we estimate the employment effects of individual digital technologieswhile
explicitly controlling for exposure to other digital technologies. Based on their aggregate em-
ployment effects, we classify these technologies as either labor-saving or labor-augmenting.
We then analyze their differential impacts across low-, middle-, and high-skilled employment
groups. Finally, we interpret our empirical findings through the lens of a task-based theoreti-
cal framework, highlighting theunderlying economicmechanismsdriving these distinct labor
market outcomes.

Our work reveals several new findings. First, we document substantial heterogeneity in
exposure to emerging digital technologies across occupations and industries. Occupations
involving routine tasks—such as clerical support workers, plant and machine operators, and
assemblers—display the highest exposure, closely followed by high-skill occupations such as
managers, professionals, technicians, and associate professionals. Exposure among these
high-skilledoccupationsprimarily occurs through recurrent rather thanspecialized tasks. More-

⁶Our econometric approach follows the equivalence condition established by Borusyak et al. (2021) and em-
ploys the AKM0 inference method developed by Adão et al. (2019).
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over, we identify a clear divide between manual and cognitive occupations: manual occupa-
tions are rather exposed to tangible technologies, including 3D printing, embedded systems,
and smart mobility, while cognitive occupations exhibit higher exposure to intangible tech-
nologies, such as computer vision, e-commerce, payment systems, health technologies, and
digital services. We observe a similar tangible–intangible split across industries, with agricul-
ture, manufacturing, and infrastructure-based services (e.g., transportation and storage) ex-
hibiting greater exposure to tangible technologies, whereas intangible technologies predomi-
nate among other service industries.

Second, we find that the overall impact of emerging digital technologies on regional em-
ployment ispositive; however,weobservea jobpolarizationpattern. Aone-standard-deviation
increase in regional exposure raises the employment-to-population ratio by 0.963 percentage
point (pp.) change, corresponding to 1.83%, between 2012 and 2019. Disaggregating these
effects by skill level reveals a clear polarization pattern: employment gains are concentrated
among low- and high-skilled workers— rising by 0.527 pp. (+4.46%) and 0.704 pp. (+4.71%)
respectively—whereas middle-skilled employment declines by 0.297 pp. (−1.29%). Yet, the
effect on low-skilled workers is only significant at the 10% level, suggesting substantial hetero-
geneity across European regions in the impact of digital technologies on these workers. Addi-
tionally, we find that employment gains are larger for female and young (aged 15–24) workers
compared tomale andmature (aged 25–64)workers. At the sectoral level, employment growth
is driven by information and communication services, professional, scientific, technical, ad-
ministrative, and support services, as well as other service sectors. These positive effectsmore
than offset the employment losses observed in agriculture, manufacturing, financial and in-
surance activities, and public services.

Third, we find consistent patterns of employment impacts across several emerging digital
technologies. We classify emerging digital technologies into three distinct categories based on
their estimated aggregate employment effects: labor-saving technologies (which reduce em-
ployment), labor-augmenting technologies (which enhance employment), and labor-neutral
technologies (withnomeasurable employmenteffect). Labor-saving technologies consistently
follow a pattern of displacing low- and middle-skilled employment by automating simpler
tasks, while simultaneously increasing demand for high-skilled workers through the creation
of new and complex tasks. Prominent examples include industrial automation and robots,
machine learning, electronicmessaging,mobilepayment systems, andsocial networking tech-
nologies.

In contrast, labor-augmenting technologies typically raise employment among low- and
middle-skilled workers by augmenting their productivity and enabling them to perform in-
creasingly complex tasks, outweighing any displacement of simpler tasks. However, these
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technologies tend to negatively affect high-skilled employment, suggesting that productiv-
ity gains and task expansion effects are insufficient to offset displacement within this group.
Prominent examples include 3D printing, remote monitoring, and e-learning. For example,
technologies like 3D printing can automate design and prototyping processes that previously
required specialized engineering skills; remote monitoring systems can reduce the need for
on-site experts; and e-learning platforms can substitute for high-skilled trainers and consul-
tants.

This paper contributes to the literature on the labor market impacts of automation and
digital technologies. Existing studies typically examine either specific technologies—such as
industrial robots (Graetz and Michaels 2018; Acemoglu and Restrepo 2020; Vries et al. 2020;
Dauth et al. 2021; Adachi et al. 2024) or AI (Webb 2019; Albanesi et al. 2023; Eloundou et al.
2024; Marguerit 2024; Hampole et al. 2025)—or use aggregate measures encompassing broad
classes of automation technologies (Mann and Püttmann 2023; Autor et al. 2024; Kogan et al.
2024). These two strands of literature produce seemingly divergent results: analyses of indi-
vidual technologies such as robots and AI tend to identify negative aggregate employment
effects, whereas broader and more aggregated studies generally report neutral or positive im-
pacts. Webridge these results by studying a comprehensive yet granular set of emergingdigital
technologies, explicitly accounting for the substantial heterogeneity and complementarities
among them. Our findings reveal that although specific digital technologies may negatively
impact employmentwhen analyzed in isolation, their aggregate effect becomes positivewhen
considered altogether. Thus, our analysis highlights the critical importance of accounting for
technological complementarities when assessing the labor market effects of digital transfor-
mation.

Ourworkalso contributes to the literatureon the technology–skill complementarity (Goldin
and Katz 1998; Autor et al. 2003, 2006; Goos et al. 2009; Autor and Dorn 2013; Goos et al. 2014;
Kogan et al. 2024). Prior research has highlighted how evolving technologies reshape the allo-
cation of tasks between workers and capital, potentially leading to either substitution or com-
plementarity effects. We extend this literature by systematically identifying which individual
emerging digital technologies act as substitutes or complements to different types of labor,
highlighting clear and recurring empirical patterns.

Our paper also contributesmethodologically by introducing a novel, scalable approach to
measure technology exposure using advanced NLP techniques. Traditional exposure metrics
typically rely on keyword-based matching between innovations and occupational or industry
descriptions. For instance, Kelly et al. (2021) and Kogan et al. (2024) use token-based TF-IDF
methods to link innovations to occupations, while Hémous et al. (2025) identify automation-
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related patents based on keyword frequencies, and Mann and Püttmann (2023) categorize
patentsby tokenpresence. In contrast, our approach leverages state-of-the-art sentence trans-
former models, allowing us to quantify exposure based on semantic and contextual similarity
rather than explicit keyword matches. Moreover, by clustering patents according to semantic
similarity, our method enables a granular yet interpretable categorization of a diverse set of
emerging digital technologies, extendingwell beyond robotics and artificial intelligence alone.

Lastly, our paper addresses a critical gap in existing exposure metrics, which have primar-
ily relied on US-specific classifications or narrowly defined technological subsets. For exam-
ple, Jurkat et al. (2022)provide international data focusedexclusively on industrial robots, Frey
and Osborne (2017) examine occupational exposure limited to computerization, and Webb
(2019), Felten et al. (2021), and Felten et al. (2023) measure exposure solely for AI and re-
cent advances in AI language modeling. In contrast, we introduce the first exposure metrics
constructed at a granular level using international standard classifications—specificallyNACE
Rev. 2 (industries) and ISCO-08 (occupations)—covering abroad spectrumofdigital technolo-
gies beyond robotics and AI. Additionally, our metrics use global patent data, thereby captur-
ing technological advances worldwide rather than within specific geographic regions. To fa-
cilitate broad usage and future research, we make these measures publicly accessible through
an open-access resource, the ‘TechXposure’ database, that we intend to continuously update
with new technologies.

The paper is organized as follows. Section 2 introduces our NLP-based methodology for
identifying emerging digital technologies and calculating exposure scores for industries and
occupations. Section 3 provides descriptive evidence on the exposure of industries and occu-
pations. Section 4 estimates the aggregate employment impacts of emerging digital technolo-
gies across European regions and explores heterogeneity by gender, age, skill, and industry. In
Section 5, we examine the employment effects of individual digital technologies, explicitly ac-
counting for technological complementarities. Section 6 further disaggregates these impacts
byworker skill groups and identifies commonpatterns of employment effects across technolo-
gies. Section 7 concludes.

2 Semantic-based Exposure to Digital Technologies
This section outlines our NLP-based methodology for calculating industry- and occupation-
level exposure toemergingdigital technologies. Webeginbydescribing the textual data sources
that we leverage using a Sentence Transformer model. We provide a detailed rationale for se-
lecting this model, focusing on the desirable properties of resulting textual representations
(or embeddings)—particularly their ability to capture semantic similarity. Next, we define the
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set of emerging digital technologies as clusters of patent embeddings. Finally, we represent
industries and occupations using embeddings of their textual descriptions and quantify their
exposure to emerging digital technologies by aggregating the semantic similarity between in-
dustry or occupation embeddings and patent embeddings within each technology cluster.

2.1 Textual Data

Patents. We use a set 𝒫 of 190,714 patent families from the Derwent Innovation Index (DII)
database filed between 2012 and 2021.⁷ These families, represented by standardized English
titles and abstracts, are structured by experts into themed blocks (e.g., novelty, use, claims) to
streamline searching.⁸ For simplicity,weuse the term ‘patent’ insteadof ‘patent family’ to refer
to a single invention across various patent offices. This patent set, constructed by Chaturvedi
et al. (2023), captures prominent digital technologies and applications since 2011.⁹

Themain advantage of theDII is that it provides expertly curated patent texts; both patent
titles and abstracts are segmented into labeled topical blocks like novelty, use, claims, etc. In
particular, patent titles are structured in two parts: the first part (𝑝1 ∈ 𝑝) provides a concise
description of the technology, while the second part (𝑝2 ∈ 𝑝) explains how the technology func-
tions. These two parts are separated by the first comma–verb combination.¹⁰ This structure
achieves a balanced representation of the invention, maintaining both generality and speci-
ficity; it enables us to control the actual content of the text, retaining only relevant information
about the invention’s essence and intended function, and excluding any other content that
could reduce signal-to-noise ratio. The relevance of this structure stems from the fact that
it is replicated in industrial and occupational descriptions. Specifically, anticipating the dis-
cussion ahead, we represent an industry or occupation with sentences that follow the same
structure: essence (from the occupation/industry title) combined with function (a task for
an occupation or an activity/process for an industry). Aligning the structure of patent titles
with industrial and occupational texts enhances the matching between patents and these tax-
onomies. Finally, unlike abstracts, titles are consistently available for all patents.

We provide three examples of patent titles present in our sample:
⁷TheDII covers over 120million global patent publications from 59worldwide patent-issuing authorities and

assigns each invention to a unique patent family. Alongside CPC and IPC classifications, DII employs Derwent
Manual Codes, a custom hierarchical indexing system reflecting technical and application content for improved
patent retrieval.

⁸Each patent document details the invention and its distinctions fromprior inventions. Information includes
a title, abstract, and metadata, such as applicants, inventors, filing year, authority, citations, and technical clas-
sifications (e.g., International Patent Classification or IPC).

⁹We provide further details on the patent corpus construction in the Online Appendix.
¹⁰Using Part-of-Speech (POS) tagging, we identify this pattern in 87.3%of our sample, commonly appearing as

‘, has’, ‘, includes’, ‘, involves’, and ‘, comprises’. For the remaining patents, titles are split at the nearest midpoint.
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1. Method for targeting television advertisement based on profile linked to online device,
involves selecting television advertisement to be directed to set-top box based on profile
information pertaining to user or online activity. (Patent ID 2013B87254, 2013)

2. Vehicle intelligent logistics control device, has GPS locating module for obtaining posi-
tion information of transport vehicle throughmain control chip, RFID reader for reading
RFID tag information, and 4G module connected with server. (Patent ID 201713859U,
2017)

3. System for recognizing training speech, has process or which is configured to increment
counter associated with word sequences, and train language model of automatic tran-
scription system using word sequences and counter. (Patent ID 202048118D, 2020)

NACERev.2 Industries. We select the 3-digit NACERev.2 classification as themost disaggre-
gated level at which we represent industries; see European Commission and Eurostat (2008)
for more details on the classification. The primary reason is that 4-digit industries within the
same 3-digit category produce a variant of a product or service category; for example, grow-
ing of different types of fruits—citrus, tropical, or pome—belongs to the growing of perennial
crops industry. In the context of digital technologies, such product/service variants do not
represent substantial differences. This enables us to include textual descriptions of the nested
4-digit level into the 3-digit descriptions, thereby expanding the textual representation of each
industry.

Following the patent title structure we discussed in previous paragraphs, each industry 𝑖
is representedwith two components: its title and a set of individual sentences of the industrial
description (merged text of 3-digit and nested 4-digit descriptions). This yields 271 industries
at the 3-digit level, each represented by an average of 11 sentences.

ISCO-08 Occupations. We select the 4-digit ISCO-08 level as the most detailed for the tex-
tual description of occupations; see International Labor Organization (2012) for more details
on the classification. Unlike industries, this level includes distinct occupations that provide
valuable insights for our analysis. Each ISCO-08 occupation corresponds to a specific set of
tasks, though some tasks may overlap across occupations.

Againmirroring thepatent title structure andanalogously to industries, eachoccupation 𝑜
is represented with its title and a set of individual tasks listed for this occupation. This process
yields 433 occupations at the 4-digit level, each represented by a title and an average of 7.5
tasks.
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2.2 Embeddings with Sentence Transformer

We measure industrial and occupational exposure to the core digital technologies as textual
similarity between thedescriptionof the innovation (fromthepatent) and industrial/occupational
description. To leverage patent, industrial, and occupational descriptions for exposure esti-
mation, we first need to represent these texts in a numerically meaningful form. To achieve
this, we employ the state-of-the-art NLP techniques. We encode the raw text of each docu-
ment intoanumerical representationusingapre-trained languagemodel; suchn-dimensional
dense vector representation of text is called embedding.

A varietyof techniques canproducevector representationsof text: fromthe simplest frequency-
basedmethods, such as TF-IDF, to bag-of-words (BoW)models, such asWord2Vec or FastText,
and seq2seq models, such as recurrent neural networks (RNNs), to various transformers. We
choose the all-mpnet-base-v2 (Reimers and Gurevych 2019; Song et al. 2020) sentence trans-
former for two crucial reasons.

First, the all-mpnet-base-v2 transformerproduces contextual or dynamic embeddings: en-
coding of a word’s meaning that accounts for its surrounding context; the same word in dif-
ferent documents has a different vector that encodes its semantic meaning. Therefore, the
content of the entire document is represented in greater detail than using BoW models that
produce static embeddings, i.e., fixed vectors for a word in all documents. Encoded variety
of semantic meanings per word and resulting contextual representation of the entire docu-
ment in dynamic embeddings is a crucial advantage over static embeddings in tasks that in-
volve cross-domain document matching, such as similarity between technology and indus-
try/occupation. The frequency-basedmethods that represent documents as (weighted) word-
count vectors, despite being used in recent works by Kogan et al. (2024) and Autor et al. (2024),
are superseded by embeddings-basedmethods for a number of substantial reasons; for exam-
ple, they cannot handle new words (fixed vocabulary), struggle with negation and polysemy,
and require exact matching leading to sparse representation, etc. Therefore, matching docu-
ments represented by word-count vectors—especially between two different corpora—is sub-
stantially less robust than using contextual embeddings.

Second, even amongmodels that produce contextual embeddings, the all-mpnet-base-v2
transformer has a significant advantage: it has been trained using contrastive learning.¹¹ Dur-
ing the training process, the all-mpnet-base-v2 transformer is given triplets of documents,
each consisting of a focal document, one similar document (positive example), and one dis-
similar document (negative example). The model’s objective is to learn such document rep-
resentations that similar documents have closely distanced embeddings and dissimilar doc-

¹¹For technical discussion and overview, refer to Wang and Liu (2021) and Dell (2025).
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uments have embeddings positioned far apart. Thus, contrastive learning explicitly ensures
thatdistances betweendocument-vectors represent their semantic (dis)similarity. Othermod-
els trained with alternative procedures, e.g., BERT with masked language modeling, produce
nuanced document representations but distances between them are not accurate representa-
tions of semantic similarity between documents (Reimers and Gurevych 2019; Wang and Liu
2021).¹²

In sum, all-mpnet-base-v2 produces both nuanced document representations (contex-
tual embeddings) and distances between them that accurately reflect semantic similarity.

2.3 Emerging Digital Technologies

We propose to represent technologies as clusters of patent embeddings. For each patent title
𝑝 ∈ 𝒫, we obtain its embedding 𝐸𝑝. We then cluster the embeddings using the k-means algo-
rithm to obtain 40 clusters, which we designate as our set of digital technologies 𝒦.¹³ We find
that 40 clusters are optimal for our analysis, as they align well with commonly discussed tech-
nologies in digital and automation literature (Acemoglu and Restrepo 2019; Martinelli et al.
2021; Zolas et al. 2021; Acemoglu et al. 2022a).

Tables A.1 to A.3, in the appendix, present our set of prominent emerging digital technolo-
gies, grouped by technology families, and provide short descriptions of each technology. The
grouping of these 40 technologies into 9 families is based on their semantic associations with
the same set of occupations, as depicted in Figure A.1 in the appendix.

2.4 Semantic-based Exposure

We focus on providing the core intuition behind the proposed methodology to estimate the
exposure scores of industries and occupations to emerging digital technologies, while the de-
tailed technical commentary is relegated to the Online Appendix. We start by calculating the
cosine similarity scores between industries/occupations and patents, filtering for relevant
pairs. Then, we aggregate these similarity scores at the technology level to derive semantic-
based exposure scores.

¹²In technical terms, the resulting embedding space is anisotropic, i.e. non-uniform in different directions,
and frequent words concentrate densely while rare words are sparsely scattered; this problem propagates with
pooling further to document level.

¹³Initially, we compute partitions ranging from 5 to 100 clusters and record each Davies-Bouldin Index (DBI)
score (Davies and Bouldin 1979). The optimal range, based on the lowest DBI scores, lies between 30 and 45
clusters, indicating high within-cluster and low between-cluster similarity. We further examine these partitions
by using the most representative phrases per cluster via c-TF-IDF, where ‘c’ stands for class, or in our case cluster.
Humancomprehensionof clusters’ content, summarized in representative phrases, helps determine the optimal
number of clusters from a prospective data-driven range.
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Figure 1: One-to-One Matching Pipeline: Patent–Industry Exposure Score with Sentence
Transformer all-base-mpnet-v2
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Embeddings 𝑝

𝐸𝑝1
= (𝑒1

𝑝1
,…,𝑒768

𝑝1
)

𝐸𝑝2
= (𝑒1

𝑝2
,…,𝑒768

𝑝2
)

Embeddings 𝑠

𝐸𝑠1
= (𝑒1

𝑠1
,…,𝑒768

𝑠1
)

𝐸𝑠2
= (𝑒1

𝑠2
,…,𝑒768

𝑠2
)

⋮
𝐸𝑠𝑛

= (𝑒1
𝑠𝑛

,…,𝑒768
𝑠𝑛

)

MPNet v2

MPNet v2

Cosine Similarity

𝑝1 𝑝2

𝑠1 0.287 0.198
𝑠2 0.458 0.310
⋮ ⋮ ⋮

𝑠𝑛 0.345 0.373

Max Pooling

𝐶𝑝1
𝑖 ≡ max𝑠 cos(𝐸𝑝1

,𝐸𝑠)
𝐶𝑝2

𝑖 ≡ max𝑠 cos(𝐸𝑝2
,𝐸𝑠)

Before we dive into the estimation of exposure scores, it is worth noting that the result-
ing measure indicates the relevance of each technology to a given industry or occupation. For
industries, relevance depends on whether a technology is integrated into the production pro-
cess or constitutes an improved industry output. For occupations, relevance reflects the im-
portance of technology in performing tasks and functions specific to that occupation.

Patent Level Similarity. We begin construction of exposure scores at the patent level. We
describe the procedure for patent–industry cases while relegating analogous derivations for
patent–occupation cases to the Online Appendix. Figure 1 illustrates our methodology using
one of the patents introduced above and the industry Advertising (73.1) as an example.

The left part of the diagram represents the preprocessed input text. The top-left box con-
tains bothparts of the patent 𝑝1 and 𝑝2, while the bottom-left box contains a set of𝑛 individual
industrial sentences 𝑠 ∈ {𝑠1,…,𝑠𝑛}, each concatenated with the title of industry 𝑖.

The central part illustrates the transformation of the input text into corresponding embed-
dings. Applying the sentence transformer MPNet v2, we obtain two patent embeddings—one
for each part 𝑝1 and 𝑝2—and 𝑛 industry embeddings—one for each sentence 𝑠.
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The rightmost part illustrates the calculation of the cosine similarity matrix of size 𝑛×2. A
cell in this matrix corresponds to a measure of semantic similarity between a patent half and
each sentence 𝑠of the industry description. Then,we select themost similar sentence for each
half 𝑝1 and 𝑝2 independently, obtaining twovalues of cosine similarity: 𝐶𝑝1

𝑖 and𝐶𝑝2
𝑖 . By taking

themaximumvalue per patent half, we ensure that industrieswith long descriptions (i.e., with
many sentences) are not overrepresented. We repeat this procedure for each patent–industry
combination.

For eachpatent–industry combination,wemeasure the relevanceof the invention inpatent
𝑝 to industry 𝑖 twice. We leverage this redundancy by using a majority vote to select relevant
industries for each patent. We detail the filtering procedure in the Online Appendix. After
filtering, each patent 𝑝 is ultimately linked only to a subset of industries 𝑖′ ∈ ℐ with cosine
similarity scores 𝐶𝑝

𝑖 ,∀𝑖 ∈ 𝑖′. On average, an invention described in a patent is relevant to
around four industries.

AggregationbyTechnology. Weaggregate cosine similarity scores𝐶𝑝
𝑖 and𝐶𝑝

𝑜 fromthepatent
level to the technology level. To do this, we sum up the cosine similarity scores of patents that
belong to technology cluster 𝑘. 𝐶𝑘

𝑑 is a cumulative similarity measure between industry (if
𝑑 = 𝑖) or occupation (if 𝑑 = 𝑜) and technology 𝑘 for the period 2012–2021.

We account for the variation in impact betweenpatents, whichmay still reflect differences
in the relevance and likelihood of use across industries and occupations, using citation-based
weighting when aggregating (Hall et al. 2005; OECD 2009).¹⁴

Our final measure of exposure 𝑋𝑘
𝑑 for 3-digit NACE Rev.2 industries and 4-digit ISCO-08

occupations to emerging digital technologies is the inverse hyperbolic sine transformation of
𝐶𝑘

𝑑 to alleviate its right skewness.

Interpretation. While our exposure metric indicates the relevance of a specific technology
to an industry or occupation, two clarifications are necessary. First, although exposure scores
serve as a proxy for technology adoption across industries and occupations, they do not mea-
sure actual adoption but rather the potential adoption. Second, our exposure scores are neu-
tral regarding the relationship between technology and labor, meaning they do not assume
ex-ante whether they are complements or substitutes in production. This neutrality is delib-
erate, allowing us to estimate the nature of this relationship later in Section 6.

Weprovide thesedataas anopen–access resource, the ‘TechXposure’ database. Thedatabase
also includes exposuremeasures at higher levels of aggregation, such as the 1-digit and 2-digit

¹⁴To do this, we weight each patent-level cosine similarity score based on the number of citations the patent
received relative to all other relevant patents filed during the same year. The Spearman rank correlation between
weighted and unweighted cosine similarity scores is about 0.89 for both industries and occupations.
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levels for industries, and the 1-digit to 3-digit levels for occupations, aswell as exposure scores
to individual technologies and over time.

Our exposure scores alignwith existingmetrics in the literaturebut also capture additional
dimensions of these technologies that previous studies have not addressed, either due to the
nonexistence of these technological features or a narrower focus. For example, the AI expo-
sure scores in Webb (2019) are limited to core aspects of AI, such as industrial automation,
workflow management systems, cloud computing, and machine learning. In contrast, Felten
et al. (2021) cover a broader scope but focus only on intangible AI applications, excluding AI
embedded in tangible technologies like industrial and mobile robots, and IoT. The comput-
erization metrics of Frey and Osborne (2017) correlate with a large segment of our emerging
digital technologies, as both computerization and software are inherent to emerging digital
technologies. We provide more details on the comparison in the Online Appendix.

3 The Exposure of Industries and Occupations to Emerging
Digital Technologies

In this section, we describe the exposure of both occupations and industries to emerging dig-
ital technologies. We start with occupations and then look at industries.

3.1 Occupation Exposure

We first examine the overall exposure of occupations, defined as the average exposure across
all technologies: 𝑋𝑜 = 1

40 ∑𝑘 𝑋𝑘
𝑜 , where 𝑋𝑘

𝑜 is the exposure of occupation 𝑜 to technology
𝑘. Figure 2 shows the distribution of exposure to emerging digital technologies across ISCO-
08 occupations. In this figure, 4-digit occupations are grouped into their respective 1-digit
categories, with their distribution presented as a boxplots. Occupation groups are ranked by
their average exposure to emerging digital technologies, indicated by the diamond point.

We observe that Clerical Support Workers (ISCO-08 Group 4) and Plant and Machine Op-
erators, and Assemblers (Group 8) are the most exposed to emerging digital technologies.
Occupations in these groups typically involve a high proportion of routine tasks related to
information handling and production equipment supervision, respectively. Although these
middle-skilled jobs have already been significantly impacted by earlier ICT waves (Goos and
Manning 2007, Goos et al. 2009, Goos et al. 2014), they remain strongly associated with newer
ICT vintages, particularly emerging digital technologies that facilitate semi- or unsupervised
information handling and equipment operation.
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Figure 2: Overall Occupation Exposure by 1-digit ISCO-08 Occupation

Notes: This figure presents the distribution of exposure to emerging digital technologies across 4-digit ISCO-08
occupations, with each 1-digit occupation displayed separately in boxplots. Vertical bars indicate themedian ex-
posure for all 4-digit occupations within the same 1-digit occupation, and diamond points represent the average
exposure for these 4-digit occupations.

High-skilled occupations, such asManagers (Group 1), Professionals (Group 2), and Tech-
nicians and Associate Professionals (Group 3), are the next most exposed to emerging digital
technologies. These roles predominantly involve non-routine cognitive tasks that frequently
require a variety of digital technologies. As technologies evolve and new vintages emerge,
these occupationsmay experience shifts in task structure due to the introduction of new tasks,
representing the reinstatement mechanism at work.

Conversely, low-skilled occupations, such as Service and Sales Workers (Group 5), Skilled
Agricultural, Forestry, andFisheryWorkers (Group6), Craft andRelatedTradesWorkers (Group
7), and Elementary Occupations (Group 9), are less exposed to emerging digital technologies.
These roles involve more interactive, non-routine tasks that are less dependent on these tech-
nologies.

Lastly,weobservegreaterheterogeneity inexposure toemergingdigital technologieswithin
high-skilled occupations (Groups 1, 2, and 3) compared to middling occupations (Groups 4
and 8). This suggests that only a subset of high-skilled roles is closely associated with these
technologies, whereas middling occupations display more generalized exposure.

We analyze the overall exposure of 1-digit ISCO Groups by examining their exposure to
each of the 40 emerging digital technologies. Figure 3 displays this exposure as a heatmap,
with exposure percentiles shown at the intersections of 1-digit occupations (rows) and emerg-
ing digital technologies (columns). This visualization reveals two distinct patterns.
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Figure 3: Occupation Exposure by Emerging Digital Technologies

Notes: Each cell shows the exposure of a 1-digit ISCO-08 occupation (row) to a given digital technology (column),
expressed as a percentile. Exposure scores below the 80th percentile are transparent.

First, we observe a clear distinction between tangible and intangible technologies in their
relevance to different occupations. Tangible technology families, such as 3D Printing, Embed-
ded Systems, and Smart Mobility, are more relevant to manual occupations in ISCO Groups
6 to 9. In contrast, intangible technology families, including E-Commerce, Payment Systems,
Digital Services, Computer Vision, and HealthTech, are more pertinent to cognitive occupa-
tions, particularly within ISCO Groups 1 to 4.

Second, we observe that Technicians and Associate Professionals (Group 3) and Clerical
Support Workers (Group 4) are exposed to a broad range of emerging digital technologies.
In contrast, Managers (Group 1) and Professionals (Group 2) are associated with a narrower
scope of relevant technologies, primarily within the domain of intangible technologies. Simi-
larly, exposure within ISCO Groups 6 to 9 is exclusively focused on tangible technologies.

Leveraging the semantic structure of tasks in the 4-digit ISCO-08 taxonomy, we identify
the actionswithin tasksmost exposed to our emergingdigital technologies. By constructionof
the ISCO-08 taxonomy, task descriptions beginwith gerunds, which define the primary action
(e.g., planning, monitoring, developing, preparing, operating, cleaning). For each gerund, we
calculate its baseline frequency or simply task frequency, representing its occurrence in a 1-
digit groupof the ISCO-08 taxonomy (i.e., thebaseline corpus). Thebaseline frequency reflects
how often the taxonomy uses a gerund to describe tasks within a 1-digit ISCO group, with
more frequent gerunds being core to that group. Thus, we define the most frequent gerunds
as recurrent tasks, and the less frequent ones as specialized tasks.

We then calculate the gerund’s target frequency or task exposure, representing its occur-
rence among established task-technology pairs in a 1-digit group (i.e., the target corpus). The
target frequency ishigh for tasksmost exposed toemergingdigital technologies, and lowotherwise—
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all frequencies are relative. While we report the most exposed tasks as a function of task fre-
quencyby 1-digit occupation groups in theOnlineAppendix, we summarize themainfindings
on the exposure of tasks to improve the understanding of occupation exposure.

Weobserveheterogeneity in taskexposurebothwithinandbetween1-digit ISCO-08groups.
This suggests that the extent to which recurrent or specialized tasks are exposed to emerging
digital technologies depends heavily on the 1-digit ISCO-08 group. However, all high-skilled
occupation groups, including Managers (Group 1), Professionals (Group 2), and Technicians
and Associate Professionals (Group 3), display a clear tendency for the majority of their recur-
rent tasks to be exposed.

Overall, the set of most exposed tasks is fairly unique to each 1-digit ISCO-08 group, with
the exception of Technicians and Associate Professionals (Group 3) and Plant and Machine
Operators (Group 8), who both prominently feature ‘operating’ and ‘monitoring’ tasks among
their top exposures. This finding aligns with previous results, as these two groups are jointly
identifiedashighly exposed to tangible emergingdigital technologies,whereasManagers (Group
1) and Professionals (Group 2) are associated with a smaller, more specific subset of technolo-
gies (see Figure 3).

3.2 Industry Exposure

For industries, we examine overall exposure as the average exposure across all technologies:
𝑋𝑖 = 1

40 ∑𝑘 𝑋𝑘
𝑖 , where 𝑋𝑘

𝑖 is the exposure of industry 𝑖 to technology 𝑘. Figure 4 shows the
distribution of overall exposure to emerging digital technologies across NACE Rev.2 indus-
tries. In this figure, 3-digit industries are grouped into their respective 1-digit sectors, with
distributions presented as a boxplot.

We observe that the Information and Communication (J) and Manufacturing (C) sectors
contain the most exposed 3-digit industries. This finding is notable given the substantial het-
erogeneity in exposure within these 1-digit sectors. Such differences in exposure may reflect
whether industries act as producers or intensive users, rather than light users, of emerging
digital technologies. Specifically, industries within the Information and Communication (J)
sector are likely to produce intangible technologies, while certain industries within the Man-
ufacturing (C) sector are likely to produce tangible technologies.

The Administrative and Support Service Activities (N) sector also exhibits a high average
level of exposure to emerging digital technologies. Several 3-digit industries within this sector
achieve overall exposure levels comparable to those in Sectors C and J. This observation is
consistentwith the findings presented for occupations, as SectorN is a significant employer of
Clerical Support Workers (ISCO Group 4), identified as the most exposed 1-digit ISCO Group.
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Figure 4: Overall Industry Exposure by 1-digit NACE Rev.2 Industry

Notes: This figure presents the distribution of exposure to emerging digital technologies across 3-digit NACE
Rev.2 industries, with each 1-digit industry displayed separately in boxplots. Vertical bars indicate the median
exposure for all 3-digit industries within the same 1-digit industry, and diamond points represent the average
exposure for these 4-digit industries.

We analyze the overall exposure of 1-digit NACE sectors by examining their exposure to
each of the 40 digital technologies. Figure 5 shows the exposure percentile heatmap for 1-digit
sectors.

Aswithoccupations,weobserve adividebetween tangible and intangible digital technolo-
gies. In the figure, exposure cells follow a diagonal pattern from the top-left to the bottom-
right, associating tangible technologies with sectors such as Agriculture (A),Mining andQuar-
rying (B), and Manufacturing (C), while aligning intangible technologies with service sectors
from Financial and Insurance Activities (K) to Other Service Activities (S). Between these ex-
tremes, sectors like Electricity, Gas and Air Conditioning Supply (D) through Information and
Communication (J) operate physical infrastructures and are thus more exposed to tangible
but distributed technology families, such as Embedded Systems and Smart Mobility.
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Figure 5: Industry Exposure by Emerging Digital Technologies

Notes: Each cell shows the exposure of a 1-digit NACERev.2 industry (row) to a given digital technology (column),
expressed as a percentile. Exposure scores below the 80th percentile are transparent.

4 Overall Impact of Digital Technologies on Employment
In this section, we estimate the aggregate net impact of digital technologies on European re-
gional employment. We start by presenting our empirical strategy and the data we use. Then,
we report the estimation results before turning to the heterogeneity analysis by demographic
and skill groups as well as by industry.

4.1 Empirical Strategy

We use employment data from the Regional European Labour Force Survey (EU-LFS), which
provides informationon thenumberof employeesandpopulationacross several demographic
and skill groups.¹⁵ Our sample includes 320 NUTS-2 regions in 32 European countries.¹⁶

We define our main outcome variable as the change in the employment-to-population
¹⁵These demographic groups include male, female, young (aged 15 to 24 years), mature (aged 25 to 64 years),

and low-, middle-, and high-skilled workers, defined by educational level (i.e., primary, secondary, and tertiary).
¹⁶The countries in the sample are (in alphabetical order): Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech

Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithua-
nia, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden,
Switzerland, Turkey, and the United Kingdom.
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ratio at the regional level between 2012 and 2019.¹⁷ This ratio is defined as the number of
employees within the group of interest (e.g., the total population or the youth population)
divided by the total number of individuals aged 15 or older.

Estimating the causal impact of digital technologies on employment involves two main
challenges: reverse causality and omitted variable bias. Reverse causality implies that techno-
logical advancements could be driven by labor shortages or rising labor costs. Furthermore,
unobserved factors—such as shifts in industry organization or infrastructure investments—
might simultaneously influence both technological change and employment levels.

To address these concerns, we adopt a shift-share strategy, leveraging recent advance-
ments in this methodology (Adão et al. 2019; Goldsmith-Pinkham et al. 2020; Borusyak et al.
2021). Specifically, we use the Bartik instrument to measure the region’s exposure 𝑋𝑟 as fol-
lows:

𝑋𝑟 = ∑
𝑗

𝑙𝑟𝑗𝑋𝑗, (1)

where 𝑙𝑟𝑗 is the employment share of sector 𝑗 in region 𝑟 in the baseline year 2010.¹⁸ The term
𝑋𝑗 denotes the average exposure of sector 𝑗 to emerging digital technologies from 2012 to
2019, calculated as

𝑋𝑗 ≡ 1
40 × ∑

𝑘∈𝒦
𝑋𝑘

𝑗 ,

where 𝑋𝑘
𝑗 represents the average exposure of sector 𝑗 to each technology 𝑘 across all 1-digit

NACE industries 𝑖 ∈ 𝑗 during this period. Although our exposure metrics in Section 2 span
2012–2021, we recalculate them for the 2012–2019 period to ensure consistency with the time-
frame in this analysis.

Weargue that sectoral exposure to emergingdigital technologies,𝑋𝑗, which represents the
shock in our shift-share design, is quasi-exogenous to changes in regional employmentwithin
Europe. Our metrics for industrial exposure, as derived in Section 2, rely on the semantic
similarity between patents and industry descriptions. Notably, only 7.1% of the patents in
our sample originate from Europe, indicating that the advancement of these technologies is
largely a global phenomenon. Consequently, global technological trends are unlikely to be
driven solely by regional labor markets in Europe. To reinforce this point, we recalculate our

¹⁷Webegin in 2012, which is the starting year of our patent sample and therefore serves as the baseline formea-
suring exposure to emerging digital technologies. We conclude in 2019 to avoid potential confounding factors
associated with employment and population changes due to the COVID-19 pandemic.

¹⁸Table A.4 in the appendix provides details on the average employment share by economic sector across Eu-
ropean regions in 2010. The three largest sectors are Market Services (average employment share of 23.8%), the
Public Sector (23.7%), and Industry (17.9%). The Information and Communication sector, which is highly ex-
posed to emerging digital technologies, accounts for only 2.3% of employment on average.
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exposure measure after excluding European patents to instrument the regional exposure.¹⁹
Since our shocks are assumed to be exogenous to local employment changes in European

labor markets, we apply the equivalence proposed by Borusyak et al. (2021) and can thus
consider our shift–share as a valid instrument.In addition to the quasi-random assignment
of shocks, our second identifying assumption is that regions more exposed to emerging dig-
ital technologies are not disproportionately affected by other labor market shocks or trends,
and that the number of observed shocks is sufficiently large.²⁰

Figure 6 shows the geographic distribution of exposure across European regions. Emerg-
ing digital technologies are more prevalent in European capital cities, which typically have
larger service sectors compared to more peripheral regions. Beyond capital cities, regions
with the highest exposure levels are predominantly located in Western Europe, specifically
in countries such as Germany, Italy, Spain, Switzerland, and the UK.

Weestimate the impactof regional exposure toemergingdigital technologieson thechange
in the regional employment-to-population ratio between 2012 and 2019, Δ𝑌𝑟, using the fol-
lowing empirical specification:

Δ𝑌𝑟 = 𝛼+𝛽𝑋𝑟 +𝑍𝛿 +𝜙𝑐(𝑟) +𝑢𝑟, (2)

where 𝑍 is a set of covariateswhich capture regional characteristics,²¹ 𝜙𝑐(𝑟) represents country
fixed effects, and 𝑢𝑟 is the error term.

4.2 Results

Table 1presents the IVestimatesof the effect of regional exposure to emergingdigital technolo-
gies on the change in the employment-to-population ratio from 2012 to 2019. The estimated
coefficient ̂𝛽 in the table can be interpreted as the effect of a one-standard-deviation increase
in regional exposure on the employment-to-population ratio, measured in percentage points
(pp.). Following recent literature on shift-share designs, we control for the sum of exposure
shares (Borusyak et al. 2021) and report AKM0 shift-share standard errors, which account for

¹⁹Comparing the 1-digit industry exposure scores with and without European patents (i.e., patents filed with
the European Patent Office), the correlation remains approximately 0.99 across all 40 emerging digital technolo-
gies, underscoring the global nature of these technological advancements.

²⁰The Herfindahl index (HHI) of average shock exposure is calculated as ∑𝑗 𝑙2
𝑗 = 0.168, where 𝑙𝑗 represents

the average employment share in sector 𝑗 in 2010 across all regions, as shown in Table A.4. The index can be
considered relatively small, as the minimum index under a uniform distribution would be 1/|𝐽| = 0.1, which
supports that the number of observed shocks is sufficiently large. The effective sample size, corresponding to the
inverse of the HHI, is 5.95.

²¹Our control variables, fixed at their 2010 values to avoid endogeneity, include the log of the population (in
thousands), the proportion of females, the proportion of the population aged over 65, the proportion with sec-
ondary and tertiary education, and the proportion employed in the industry sector.
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Figure 6: Regional Exposure to Emerging Digital Technologies in Europe (2012–2019)

Notes: This figure illustrates the geographic distribution of exposure to emerging digital technologies for NUTS-
2 regions. Regional exposure is constructed as a shift-share variable by interacting the sectoral employment
shares in the baseline year 2010 and sectoral exposure to these technologies from 2012 to 2019. Regions are
categorized into deciles. Regions are shaded according to their exposure level, with the legend indicating the
range of exposure. Areas not applicable (NA) are marked in grey.

arbitrary cross-regional correlation in the regression residuals (Adão et al. 2019).
We find a positive relationship between the change in the employment-to-population ra-

tio from 2012 to 2019 and the regional exposure to emerging digital technologies. In our pre-
ferred specification, in column (2), a one-standard-deviation increase in regional exposure
corresponds to a 0.913 pp. change, or 1.83%, in the employment-to-population ratio from
2012 to 2019. In column (3), we add the employment share of industry in the baseline year as
a control to account for employment changes that would result from local exposure of the in-
dustry to other shocks, such as deindustrialization or the China shock. The results remain the
same. In columns (4) and (5), we exclude the top 10% most exposed regions and unweighted
observations and obtain similar coefficients.
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Table 1: Effect of Digital Technologies on Regional Employment

Dep. var: Δ Emp-to-pop. Ratio (2012-2019) × 100
Weighted Unweighted

(1) (2) (3) (4) (5)
Exposure (Standardized) 0.641∗∗ 0.913∗∗∗ 0.963∗∗∗ 1.140∗∗∗ 0.739∗∗∗

(0.241) (0.139) (0.129) (0.134) (0.145)
Country FE ✓ ✓ ✓ ✓ ✓
Demographics ✓ ✓ ✓ ✓
Industry share ✓ ✓ ✓
Exclude Top 10% Exposed Regions ✓
First-stage coefficient 0.998 1.005 1.000 1.001 1.000
First-stage 𝐹 -stat 2,351,984 1,659,087 5,476,403 4,986,600 6,586,903
R2 0.668 0.697 0.697 0.707 0.721
Adj. R2 0.629 0.654 0.653 0.660 0.681
Num. obs. 320 320 320 288 320

Notes: This table presents the IV estimates of exposure to emerging digital technologies on regional employment. It presents the coeffi-
cientsmeasuring the effect of regional exposure to emerging technologies, constructed as shift-shares and standardized, on changes in the
employment-to-population ratio between 2012 and 2019 in European regions, expressed in percentage points. Regressions are weighted
by population in 2010. Column (1) includes country fixed effects; Column (2) adds demographics controls in 2010, including the logarithm
of population, the proportion of females, the proportion of the population aged over 65, and the proportions of the population with sec-
ondary and tertiary education levels; Column (3) adds the share of employment in the industry sector, Column (4) excludes the top 10%
most exposed regions; Column (5) reports the unweighted estimate. All columns control for the sum of exposure shares. ∗∗∗𝑝 < 0.01;
∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses are derived following the AKM0 inference procedure from Adão et al. (2019).

4.3 Impact by Demographic and Skill Groups

Table 2 provides estimates of the same empirical specification, including country fixed effects
and controlling for demographic characteristics of the region, for each demographic and skill
group.

We find that emerging digital technologies have an overall positive impact on both female
and male employment. A one-standard-deviation increase in regional exposure over the pe-
riod leads to a 0.629 pp. change (equivalent to 2.83%) in the employment-to-population ratio
for women and a 0.288 pp. change (1.03%) for men. Although the impact is twice as large for
women, there is greater regional heterogeneity in this effect, as indicated by the larger stan-
dard errors compared to those for men.

Both young workers (aged 15 to 24) and mature workers (aged 25 to 64) experience a pos-
itive impact from emerging digital technologies. The former group experiences a 0.288 pp.
change in the employment-to-population ratio, representing a 2.94% increase, while the lat-
ter group experiences a 0.779 pp. change, representing a 1.72% increase. This finding aligns
with Adão et al. (2024), who show that labormarket adjustments to technological innovations,
or technological transitions, are often driven by the gradual entry of younger generations.

The overall positive effect of digital technologies on employment primarily reflects the
displacement of middle-skilled workers and the increase in high-skilled employment, with
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Table 2: Effect of Digital Technologies on Regional Employment by Demographic and Skill
Groups

Dep. var: Δ Emp-to-pop. Ratio (2012-2019) × 100
All Gender Age Skill

Total Female Male Y15-24 Y25-64 Low Mid High
(1) (2) (3) (4) (5) (6) (7) (8)

Exposure (Standardized) 0.913∗∗∗ 0.626∗∗∗ 0.287∗∗∗ 0.139∗∗∗ 0.775∗∗∗ 0.527∗ −0.297∗∗∗ 0.704∗∗∗

(0.139) (0.118) (0.031) (0.027) (0.119) (0.240) (0.066) (0.129)
Emp-to-pop. Ratio in 2012 50.14 22.22 27.92 4.76 45.38 11.89 23.11 15.00
Change (in %) 1.83 2.83 1.03 2.94 1.72 4.46 −1.29 4.71
R2 0.697 0.557 0.725 0.329 0.722 0.623 0.750 0.647
Adj. R2 0.654 0.496 0.686 0.236 0.683 0.571 0.715 0.598
Num. obs. 320 320 320 320 320 320 320 320
Notes: This table presents the IV estimates of exposure to emerging digital technologies on regional employment by demographic and skill groups. It
presents the coefficients measuring the effect of regional exposure to emerging technologies, constructed as shift-shares and standardized, on changes
in the employment-to-population ratio between 2012 and 2019 in European regions, expressed in percentage points, for all workers, female and male
workers, young (aged 15-24) and mature (aged 25-64) workers, and low-, middle-, and high-skilled workers. Regressions are weighted by population
in 2010. All columns include a control for the sum of exposure shares; country fixed effects; demographics controls in 2010, including the logarithm
of population, the proportion of females, the proportion of the population aged over 65, the proportions of the population with secondary and tertiary
education levels. ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses are derived following the AKM0 inference procedure from
Adão et al. (2019).

respective changes of −0.299 pp. in the employment-to-population ratio of the former and
0.707 pp. in the same ratio as the latter.

The effect on low-skill, although positive, is only significant at the 10% which may reflect
important heterogeneity in the effects across regions and technologies.

As a robustness check, we conduct a placebo test by estimating the effect of regional expo-
sure to emerging digital technologies from 2012 to 2019 on the change in the employment-to-
population ratio during the pre-period, specifically from 2002 to 2009. These estimates, avail-
able in the Online Appendix, show null effects for all demographic groups in the pre-period,
reinforcing the validity of our shift-share approach. The only notable exception is a positive
and significant effect (at the 10% level only) on the employment of high-skilled workers. We
interpret this result as consistent with our expectations, as regions more exposed to emerging
digital technologies are likely those where the labor force was upskilling, and therefore better
positioned to adopt and benefit from new digital technologies.

4.4 Impact by Industries

Table3presents estimatesof the impactofdigital technologieson theemployment-to-population
ratio across the 10 industries. These specifications include countryfixed effects and control for
regional demographic characteristics. Additionally, the employment share of the industry of
interest in 2010 is included as a control variable. This control accounts for pre-existing trends
that may disproportionately affect regions specialized in a given industry, thereby potentially
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confounding the estimated effect of digital technologies on that industry.
Aggregate positive employment impacts of digital technologies are observed only in cer-

tain service sectors, including Information and Communication (J); Real Estate Activities (L);
Professional, Scientific, Technical, Administrative, andSupport Services (M–N); andOther Ser-
vices (R–U). These sectors typically employ a high proportion of high-skilled workers whose
tasks are complementary to digital technologies.

Conversely, the negative effects of digital technologies on employment are primarily con-
centrated in industries such as Agriculture (A); Industry (B–E); Construction (F); Market Ser-
vices (G–I); Financial and Insurance Activities (K); and Public Services (O–Q). The first three
industries are characterized by manual and routine tasks, for which tangible emerging digital
technologies are particularly effective at substituting repetitive physical labor. Similarly, the
last two involve jobswithmore cognitive and repetitive tasks, susceptible to substitution by in-
tangible emerging digital technologies. This is consistent with the pattern observed in Figure
3, where manual occupations exhibit high exposure to tangible technologies, and cognitive
occupations to intangible ones.

Interestingly, we find a relatively small negative effect for Market Services (G–I), which is
statistically significant only at the 10% level. This sector typically comprises jobs that can be
automatedbyboth tangible technologies—such as those used in transportation—and intangi-
ble technologies—such as those used in retail and commerce. However, displacement effects
may be partially offset by substantial productivity gains, resulting in a modest positive net im-
pact. Moreover, the large standard errors suggest heterogeneity across regions in the impact
of digital technologies within this sector.
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Table 3: Effect of Digital Technologies on Regional Employment by Industry

Dep. var: Δ Emp-to-pop. Ratio (2012-2019) × 100
Agriculture Industry Services

A B-E F G-I J K L M-N O-Q R-U
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Exposure (Standardized) −0.275∗∗ −0.448∗∗∗ −0.036∗∗∗ −0.169∗ 0.051∗∗∗ −0.082∗∗ 0.044∗∗∗ 0.327∗∗∗ −0.129∗∗ 0.189∗∗∗

(0.102) (0.026) (0.019) (0.084) (0.016) (0.021) (0.010) (0.042) (0.032) (0.023)
Emp-to-pop. Ratio in 2012 3.12 8.89 3.59 11.81 1.39 1.44 0.35 4.40 12.16 2.61
Change (in %) −8.73 −5.04 −1.00 −1.44 3.66 −5.73 12.43 7.52 −1.06 7.28
R2 0.507 0.565 0.589 0.527 0.412 0.230 0.292 0.465 0.555 0.478
Adj. R2 0.436 0.503 0.530 0.459 0.328 0.119 0.191 0.388 0.491 0.403
Num. obs. 320 320 320 320 320 320 320 320 320 320
Notes: This table presents the IV estimates of exposure to emerging digital technologies on regional employment by industry. It presents the coefficients measuring the effect of
regional exposure to emerging technologies, constructed as shift-shares and standardized, on changes in the employment-to-population ratio between 2012 and 2019 in European
regions, expressed in percentage points, for Agriculture (A); Industry, excluding Construction (B-E); Construction (F); Market Services, excluding Information and Communication
(G-I); Information andCommunication (J); Financial and Insurance Activities (K); Real Estate Activities (L); Professional, Scientific, Technical, Administration and Support Services
(M-N); PublicAdministration,Defence, Education,HumanHealth andSocialWork (O-Q);Other Services (R-U). Regressions areweightedbypopulation in 2010. All columns include
a control for the sum of exposure shares; country fixed effects; demographics controls in 2010, including the logarithm of population, the proportion of females, the proportion of
the population aged over 65, the proportions of the population with secondary and tertiary education levels; and the regional share of employment in the industry of interest in
2010. ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses are derived following the AKM0 inference procedure from Adão et al. (2019).
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5 Individual ImpactofDigitalTechnologiesandComplemen-
tarity

5.1 Empirical Strategy

Until now, we have examined the overall impact of digital technologies, treating them as a sin-
gular and unified factor affecting employment. However, the granularity of our TechXposure
database allows us to assess the individual impacts of specific technologies. Different tech-
nologies may have positive effects on certain skill groups while negatively affecting others.

Estimating the impact of a specific technology on employment is subject to several iden-
tification challenges. One key issue is that many technologies are highly complementary and
thus tend to be adopted simultaneously. For example, consider two technologies within dig-
ital services: cloud computing and cloud storage. The former enables the processing of large
volumes of data, while the latter provides the infrastructure to store them. Their full potential
is realized when used in combination. Another example from our set of digital technologies is
industrial automation (which includes industrial robots), often adopted alongside other tech-
nologieswithin the same family of embedded systems, such as remotemonitoring and control
systems. Therefore, disentangling the individual impact of a given technology on employment
requires accounting for its complementarity with other technologieswithin the same family.

In addition to complementarity within technology families, digital technologies can also
interact with technologies across different families. For example, cloud technologies, which
belong to digital services, can be integrated with e-commerce technologies, such as online
shopping platforms and digital advertising. Similarly, industrial robots and control systems—
technologies classified under embedded systems—can be combined with workflow manage-
ment systems, which belong to digital services. Therefore, it is also essential to account for
technology complementarity between digital technology families.

We estimate an empirical specification similar to that used for assessing the overall impact
in the previous section, but with two key differences. First, our variable of interest is the shift-
share exposure of a region to an individual digital technology, denoted as 𝑋𝑘

𝑟 . Second, we ac-
count for bothwithin-family and between-family technology complementarities by including
two control variables: the regional exposure to all other technologies within the same family
(excluding the one of interest), 𝑋𝐾\{𝑘}

𝑟 , and the regional exposure to all remaining emerging
digital technologies outside that family, 𝑋−𝐾

𝑟 . Both latter are computed as shift-share vari-
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ables. Thus, our empirical specification is

Δ𝑌𝑟 = 𝛼+𝛽𝑘𝑋𝑘
𝑟 + 𝛾1𝑘𝑋𝐾\{𝑘}

𝑟⏟⏟⏟⏟⏟
Within-Family

Complementarity

+ 𝛾2𝑘𝑋−𝐾𝑟⏟
Between-Family
Complementarity

+𝑍𝛿 +𝜙𝑐(𝑟) +𝑢𝑟, (3)

where Δ𝑌𝑟 is the change in the employment-to-population ratio between 2012 and 2019, 𝑍
includes the same set of covariates as in Equation (2) and 𝜙𝑐(𝑟) are country fixed effects.

For each of the 40 individual digital technologies, we estimate the regression model both
with and without controls for within- and between-family technology complementarities. All
estimates are reported in the Online Appendix. In the following, given the large number of
estimates, we organize the results into visualizations to enhance their interpretability.

5.2 Results

Figure 7 presents the estimates of the net effect of each individual technology on the regional
employment-to-population ratio. The grey bars correspond to the naive estimates, without
controlling for technology complementarity, while the red bars account for both within and
between technology complementarity. This figure delivers two key results.

First, accounting for complementarity between digital technologies is essential when as-
sessing their impacts on employment. Starting with the naive estimates, we observe that
the vast majority of digital technologies exhibit a positive effect on employment—except for
IoT and Smart Agriculture, which show negative effects, and Industrial Automation, Machine
Learning, and3DPrinting-related technologies, whichdisplayno significant impact. Account-
ing for technology complementarity, however, substantially alters these estimates. For in-
stance, technologies that show no significant effect with naive estimation—such as Indus-
trial Automation and 3D Printing—reveal significant positive or negative impacts once com-
plementarities are considered. Conversely, technologies like AR/VR and Intelligent Logistics,
which appear to have positive effects at first glance, actually exhibit non-significant or even
negative impacts. These shifts reflect patterns of co-adoption: many of these technologies are
deployed together, and failure to account for this joint adoption may bias estimates toward
the average joint positive effect, as found in the previous section, obscuring the true individ-
ual contributions of each technology.

Second, the figure suggests that digital technologies can be grouped into three categories:
labor-augmenting technologies,whichhaveapositive impactonemployment (e.g., E-Learning);
labor-saving technologies, which reduce employment (e.g., Industrial Automation); and neu-
tral technologies, which have no effect (e.g., Autonomous Vehicles). Several labor-saving digi-
tal technologies have received considerable attention in the literature, including industrial au-
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Figure 7: Net Employment Effect by Emerging Digital Technology

Notes: This figure summarizes the IV estimates of the employment impact of digital technologies with and with-
out controlling for technology complementarities. Estimated coefficients are reported in the Online Appendix.
Confidence intervals are derived following the AKM0 inference procedure from Adão et al. (2019).
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tomation and robot controls, machine learning and neural networks, and mobile payments.
Ourfindingshighlight the importanceof accounting for technologycomplementaritywhen

estimating the impact of digital technologies on employment. Furthermore, the emphasis in
the literature on technologies with negative employment impacts may lead to the neglect of
other individual technologies, or combinations thereof, that could have a positive effect on
employment.

6 Decomposing the Impacts by Skill
We further disaggregate the individual employment effects of each digital technology on each
skill group by estimating Equation (3) for the employment-to-population ratio of each skill
group (i.e., low, middle, and high skilled). As in the previous section, we organize the results
into visualizations and provide the regression tables in the Online Appendix. Before diving
into the empirical results, we develop a tractable task-based model to help interpret them—
the details of the model are relegated to the Online Appendix.²²

6.1 A Task-BasedModel with Differentiated Input Factors

In our model, there are three types of labor, 𝑙 ∈ {𝐿,𝑀,𝐻}, and three corresponding types of
capital associated with each labor 𝑘 ∈ {𝐾𝐿,𝐾𝑀 ,𝐾𝐻}, each designed to perform the simpler
tasks typically handled by its associated labor type. Tasks are continuously distributed along
a complexity spectrum and assigned to factors based on comparative advantage.

The economy produces a final good by aggregating a continuum of tasks through a CES
aggregator, with the task space endogenously segmented by the relative unit costs of factors.
Each factor’s productivity in a given task reflects a fixed technological level and a task-specific
comparative advantage profile. Labor and capital types are arranged hierarchically by skill,
and each performs a contiguous segment of tasks. Panel A in Figure 8 shows the allocation of
tasks along the task space. The boundaries of each labor type’s task segment, denoted by 𝑥𝑙
and 𝑥𝑙, emerge endogenously from the equilibrium relative productivities across factors.

The introduction of an emerging digital technology affects task allocation through two dis-
tinct channels. First, it alters factor-specific productivity, which reshapes the allocation of
existing tasks by changing relative unit costs. Second, it expands the task complexity fron-
tier, creating new tasks that can only be performed by high-skilled labor. The resulting task
allocation—driven by both reallocation and expansion—determines the demand for each la-

²²For more details about the task-based framework, see the canonical model of Acemoglu and Autor (2011),
and extensions focusing on technological change by Acemoglu and Restrepo (2018) and Acemoglu et al. (2024).
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Figure 8: Task Space and theReassignment of Taskswith Labor-Saving andLabor-Augmenting
Technology

[Panel A] Task Space

[B] Labor-Saving Technology

[C] Labor-Augmenting Technology

Automation Reinstatement Auto. Reins. Auto. New Tasks

Auto. Reins. Auto. Reins. Auto.

0 𝑥𝐿 𝑥𝐿 𝑥𝑀 𝑥𝑀 𝑥𝐻 1

𝐾𝐿 𝐿 𝐾𝑀 𝑀 𝐾𝐻 𝐻

𝑑𝐿 < 0 𝑑𝑀 < 0 𝑑𝐻 > 0

𝑑𝐿 > 0 𝑑𝑀 > 0 𝑑𝐻 < 0
Notes: This figure displays the assignment of tasks to production factors along the task space in Panel A, and the
reallocation of tasks following the introduction of a labor-saving technology (Panel B) and of a labor-augmenting
technology (Panel C).

bor type based on the quantity and complexity of tasks assigned and the corresponding pro-
ductivity gains.

We use this framework to interpret how digital technologies impact employment across
skill groups, identifying four distinct channels through which technology reshapes labor de-
mand. First, aggregate productivity gains raise labor demand uniformly across all factors.
Second, task price effects reduce demand for more productive labor types as tasks become
cheaper to perform. Third, relative productivity shifts between labor and capital lead to task
reallocation: this can result in displacement, as simpler tasks are automated, or in upskilling,
as more complex tasks are reinstated to labor. The direction of reallocation depends on how
technology alters the unit cost structure. Fourth, when technologies expand the task frontier,
they generate a reinstatement effect by introducing entirely new tasks for high-skilled work-
ers. By examining changes in employment patterns across skill groups, we infer the dominant
mechanisms at play for each digital technology.

Panels B and C in Figure 8 illustrate how labor-saving and labor-augmenting technologies
reshape task allocation and, consequently, labor demand. These examples are discussed be-
low in the light of the empirical results.
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Figure 9: Employment Effects of Labor-Saving Digital Technologies by Skill Groups

Notes: This figure summarizes the IV estimates of the employment impact of labor-saving digital technologies
by skill groups. Estimated coefficients are reported in the Online Appendix. Confidence intervals are derived
following the AKM0 inference procedure from Adão et al. (2019).

6.2 Results

Figures 9 and 10 report the estimated employment effects by skill groups for emerging digital
technologies identified as labor-saving and labor-augmenting, respectively.²³

Labor-Saving Technologies. In line with our model’s characterization of labor-saving tech-
nologies (i.e., those with an individual negative effect on aggregate employment), these latter
tend to reduce employment among low- and middle-skilled workers while increasing it for
high-skilled workers. Technologies such as Electronic Messaging, Industrial Automation, Mo-
bile Payment, Smart Agriculture, and the Internet of Things (IoT) reduce lower-skill employ-
ment due to the dominance of simple task automation over complex task reinstatement. In
these cases, capital productivity gains outweigh those of labor, and aggregate output effects
fail to offset employment losses. At the same time, the increase in high-skilled employment

²³Figure A.2, in the appendix, presents the estimates for labor-neutral technologies.
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Figure 10: Employment Effects of Labor-Augmenting Digital Technologies by Skill Groups

Notes: This figure summarizes the IV estimates of the employment impact of labor-augmenting digital technolo-
gies by skill groups. Estimated coefficients are reported in theOnline Appendix. Confidence intervals are derived
following the AKM0 inference procedure from Adão et al. (2019).

suggests that these technologies expand the task frontier by generating new high-complexity
tasks.

Some technologies yield more nuanced effects. Machine Learning, for instance, signifi-
cantly reduces low-skilled employment but leaves middle-skilled employment unchanged—
indicating limited task reallocation, possibly due to a balance between automation and re-
instatement. Social media technologies also exhibit skill-specific heterogeneity: Social Net-
working reduces low-skilled employment while increasing demand for middle-skilled labor,
whereas Digital Media Content negatively affects only low-skilled workers. Intelligent Logis-
tics stands out as a purely labor-displacing technology, reducing employment among low-
skilled workers without generating compensatory gains for any skill group.

Labor-AugmentingTechnologies. Figure10 shows theestimatedemploymenteffects across
skill groups for digital technologies classified as labor-augmenting—those with an individual
positive impact on aggregate employment.
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Consistent with our characterization of labor-augmenting technologies, these latter tend
to increase employment for low- and middle-skilled workers while reducing demand for high-
skilled labor. This pattern reflects a form of upskilling in which digital tools enhance the pro-
ductivity of lower-skilled workers, enabling them to take on more complex tasks that would
otherwise fall to higher-skilled counterparts.²⁴ However, the combined effects of aggregate
productivity gains and task expansion are insufficient to fully compensate for the displace-
ment of high-skilled labor, resulting in a net decline in their employment.

Among the labor-augmenting technologies, 3D Printing stands out for its pronounced
effect, significantly increasing employment for low-skilled workers without materially affect-
ing middle-skilled employment. Other technologies—including Vehicle Telematics, Remote
Monitoring, Smart Home systems, and Energy Management platforms—boost employment
across both low- and middle-skill groups. These patterns support the interpretation that such
technologies promote task reassignment and skill broadening rather than simple substitution
across occupations exposed to them.

6.3 Discussion

This section presents a comprehensive overview of the empirical results obtained at the differ-
ent levels of analysis and connects them to the theoretical underpinnings of the model.

First, we demonstrate that the overall impact of emerging digital technologies on employ-
ment is positive (see Table 1). However, oncewe split this aggregate positive effect into individ-
ual technologies in Figure 7, they form three distinct groups: 1) those that reduce employment
(labor-saving), 2) those that have a positive impact on employment (labor-augmenting), and
3) technologies that exert no impact on employment (labor-neutral).

Then,wedelve deeper into the impact of labor-saving and labor-augmenting technologies
among low-, middle-, and high-skilled employment. Figure 10 reveals that labor-augmenting
technologies increase low- and middle-skilled employment while reducing the high-skilled
one. In contrast, labor-saving technologies lead to a decline in low- and middle-skilled em-
ployment and a rise in high-skilled employment, as depicted in Figure 9.

To interpret these results, we return to our theoretical framework to show how its underly-
ingmechanismscangenerate theobservedoutcomes. Both labor-savingand labor-augmenting
emerging digital technologies lead to task reallocation between capital and labor, affecting
factor-specific productivities and creating new tasks.

Specifically, labor-saving digital technologies, shown in Panel B of Figure 8, are character-
ized by larger productivity gains for capital relative to labor. This leads to the automation of

²⁴See Agrawal et al. (2023) for a discussion of the upskilling effect of AI.
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simpler tasks across all skill groups. Because the relative productivity losses are not accom-
panied by sufficient reinstatement of more complex tasks, low- and middle-skilled workers
experience a net loss in task assignments. However, these technologies often expand the task
frontier, introducing new tasks that benefit high-skilled workers. As a result, demand declines
for low- and middle-skilled labor but increases for high-skilled labor.

By contrast, labor-augmenting technologies, shown in Panel C of Figure 8, enhance labor
productivity more than capital productivity. While automation of simple tasks still occurs,
these losses are offset by the reinstatement of more complex tasks to labor, particularly bene-
fiting low- and middle-skilled workers. However, because these technologies contribute mini-
mally to the expansion of the task frontier, they offer limited gains for high-skilled labor at the
upper end of the task space.

Finally, the overall effect of emerging digital technologies across three skill groups esti-
mated in Table 2 suggests ongoing polarization: low- and high-skilled labor experiences over-
all positive impact, while the middle-skilled workers are being substituted. This means that,
for low-skilled workers, upskilling toward more complex tasks enabled by labor-augmenting
technologies outweighs the automation of simple tasks by labor-saving technologies, while
the opposite is the case for middle-skilled jobs. Lastly, for high-skilled labor creation of new
high-complexity tasks by labor-saving technologies offsets the loss of simple tasks to automa-
tion by labor-augmenting technologies.

7 Conclusion
Recent advancements in digital technologies have heightened public and academic interest
in understanding their future implications for employment. Determining whether these tech-
nologies will create more jobs than they displace remains a critical question for policymakers
andworkers alike. However, existing research has largely focused either narrowly—examining
specific technologies such as industrial robots or artificial intelligence (AI)—or broadly, using
aggregate measures encompassing a wide variety of automation technologies.

This paper addresses these limitations by systematically identifying and analyzing the em-
ployment impacts of a broad and granular set of emerging digital technologies. We find that,
overall, these technologies have a net positive effect on regional employment-to-population
ratios. A key insight from our analysis is the crucial role of technological complementari-
ties: while individually some technologies negatively impact employment, collectively their
complementary interactions lead to net positive aggregate outcomes. Our results thus indi-
cate that focusing solely on prominent technologies like AI and robotics risks overlooking the
broader, positive employment effects arising from interactions among diverse digital innova-
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tions.
When accounting explicitly for technology complementarities, we categorize digital tech-

nologies based on their aggregate employment effects. We identify two distinct types: labor-
saving technologies—including industrial automation, machine learning, electronic messag-
ing, mobile payments, and social networking—that tend to displace low- and middle-skilled
workers through task automation, while simultaneously creating new employment opportu-
nities for high-skilled workers; and labor-augmenting technologies—such as 3D printing, re-
motemonitoring, and e-learning—that enhance employment among low- andmiddle-skilled
workersbyupgrading their task capabilities, thoughat the cost of reducedemployment among
high-skilled groups.

Central to this study is our development of novel exposure measures for industries and
occupations to 40 emerging digital technologies introduced over the past decade. Leveraging
advanced NLP methods—specifically, sentence transformers—–we construct granular, inter-
nationally applicable exposure scores. Our open-access dataset, the ‘TechXposure’ database,
provides an extensive resource for future research.

The ‘TechXposure’ database offers several distinct advantages. First, because it uses tex-
tual descriptions from international standard classifications (NACE and ISCO), our exposure
measures are universally applicable beyond any single national context. Second, our method-
ology does not rely on keyword-based matching but instead leverages semantic and contex-
tual similarity,making the approach readily adaptable to future contexts andother technology
domains, such as green innovations or forthcoming classification revisions.

Nonetheless, our exposure metrics reflect only the technological relevance to industries
and occupations, not the direction (augmenting or automating) of their employment effects.
While this limitation constrains interpretability in certain contexts, it also reduces assump-
tions in data construction and acknowledges the context-specific nature of technological im-
pacts on employment.

We view our work as providing foundational infrastructure for ongoing research into tech-
nological change and labormarkets. Bymaking this detailed and comprehensive dataset pub-
licly available, we anticipate enabling future analyses to investigate a wide range of emerging
technologies, extending beyond commonly studied areas such as AI and robots to include
less-examined domains such as cloud computing, social networks, and health technologies.
Furthermore, our reliance on international classifications ensures broad applicability, which
would facilitate studies that explore technology impacts across diverse institutional and eco-
nomic settings, particularly within Europe, where institutional variation significantly influ-
ences technology adoption and labor market outcomes. Our database aims to be both acces-
sible and user-friendly for researchers and policymakers alike.
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Appendix

Figure A.1: Semantic Co-Occurrence of Technologies Across 3-digit ISCO-08 Occupations

Notes: This figure shows all pairwise semantic-based co-occurrences of emerging digital technologies across 3-
digit occupations as a correlation matrix, which is symmetric with diagonal values of 1. The matrix categorizes
technologies into blocks, grouping them according to their semantic associations with the same set of occupa-
tions.
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Table A.1: Emerging Digital Technologies (1/3)

Technology Description

[F1] 3D Printing

1 3D Printer
Hardware

Three-dimensional printers and their components, such as printing heads, pens,
nozzles, platforms, and devices for printing, extruding, cleaning, recycling, heat-
ing, and cooling.

2 3D Printing Printing systems for creating three-dimensional objects using a variety of materi-
als and techniques, like photocuring and powder spreading.

3 Additive
Manufacturing

Technologies andprocesses for additivemanufacturing, with applications such as
prostheses and building materials.

[F2] Embedded Systems

4 Smart Agriculture &
Water Management

Various Internet of Things (IoT) technologies for intelligent and remote manage-
ment in agriculture, and water and sewage systems.

5 Internet of Things
(IoT)

Systems and devices interconnected via IoT for data collection, remote control,
and real-time monitoring in diverse applications, including agriculture, home au-
tomation, and environmental monitoring.

6 Predictive Energy
Management and
Distribution

A combination of network, data management, and AI technologies for monitor-
ing, distribution, and efficient use of electrical power and energy, including renew-
able energy sources, and for consumptionprediction in intelligent powermanage-
ment.

7 Industrial
Automation &
Robot Control

Industrial process automation, including robots, programmable logic controllers,
and related control apparatuses such as remote control and fault diagnosis.

8 Remote Monitoring
& Control Systems

Real-time remote monitoring and management technologies for factories, build-
ing management, warehouses, intelligent homes, disaster management, and net-
work security.

9 Smart Home &
Intelligent
Household Control

Various IoT technologies for the intelligent control of homes andbuildings, includ-
ing household appliances, home environments, and smart home integrations, of-
ten utilizing wireless communication and monitoring.

[F3] Smart Mobility

10 Intelligent Logistics A combination of monitoring, remote control technologies, data acquisition, and
mobile robot technologies for logistics and delivery applications, including sup-
ply chain management, warehouse operations, package tracking, and courier ser-
vices.

11 Autonomous
Vehicles & UAVs

Developments inunmannedaerial vehicles (UAVs), drones, andautonomousdriv-
ing technologies, with an emphasis on vehicle control, navigation, and sensor in-
tegration.

12 Parking & Vehicle
Space Management

Networking technologies for parking management, including systems for moni-
toring available spaces and intelligent parking solutions.

13 Vehicle Telematics
& Electric Vehicle
Management

Technologies for intra-vehicle information management, especially in electric ve-
hicles, including aspects of real-time monitoring, traffic information, and vehicle
diagnostics.

14 Passenger
Transportation

Technologies for ride-sharing, taxi hailing, and public transportation reservations
using real-time information, electronic ticketing, and route optimization.
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Table A.2: Emerging Digital Technologies (2/3)

[F4] Food Ordering

15 Food Ordering &
Vending Systems

Wireless infrastructures, encryption, monitoring, and remote control technolo-
gies for food ordermanagement, such as automatic vending, self-service ordering,
meal preparation, and delivery.

[F5] E-Commerce

16 Digital Advertising Automated tracing and tagging, and AI technologies for digital advertisements, in-
cluding targeted delivery on mobile devices.

17 Electronic Trading
and Auctions

Online trading platforms, financial instrument exchanges, and auction mecha-
nisms, focusing on real-time bidding, trading, and market data.

18 Online Shopping
Platforms

Wireless technologies (e.g., RFID and mobile terminals), encryption (e.g.,
blockchain), and AI technologies for e-commerce transactions, and digital tools
related to the purchase, sale, and display of product information, including rec-
ommendation systems.

19 E-Coupons &
Promotion
Management

Datamanagement platforms for electronic coupon distribution,management, re-
demption, and associated loyalty programs.

[F6] Payment Systems

20 Electronic
Payments &
Financial
Transactions

A combination of wireless (e.g., mobile) and encryption (e.g., blockchain) tech-
nologies for processing electronic payments (e.g., credit card transactions) and
interfacing with financial institutions.

21 Mobile Payments A combination of mobile technologies for processing electronic payments.
22 Gaming & Wagering

Systems
A combination of user interface and data management technologies for gaming,
both online and physical, including gambling and gaming machines.

[F7] Digital Services

23 Digital
Authentication

Encryption and robotic processing technologies for verifying user identities, se-
curing transactions, and safeguarding data through various authentication mech-
anisms, such as biometrics and cryptographic methods.

24 E-Learning A combination of AI and data management technologies for digital platforms and
systems in education, including teaching, learning, and classroom management.

25 Location-Based
Services & Tracking

Technologies that provide location-based content and services, often relying on
global positioning and navigation systems and related communication technol-
ogy.

26 Voice
Communication

Technologies focusing on voice communication, including communication pro-
tocols and user interfaces.

27 Electronic
Messaging

Digital communication methods, infrastructure, and user interfaces for services
such as email and conferences.

28 Workflow
Management

A combination of AI and network technologies for management applications, in-
cluding workflow automation, recruitment, event scheduling, and building and
property management.
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Table A.3: Emerging Digital Technologies (3/3)

[F7] Digital Services (continued)

29 Cloud Storage &
Data Security

Cloud-baseddata storage, distributeddatamanagement, encryption, andbackup,
often integrated with blockchain technology.

30 Information
Processing

Systems formanaging, processing, anddeliveringdata and informationacross var-
ious domains, potentially including content generation, transmission, and verifi-
cation.

31 Cloud Computing Cloud computing and virtualmachines, focusingon cloudplatforms and resource
allocation in cloud environments.

32 Recommender
Systems

Algorithms and systems for providing recommendations and personalized con-
tent delivery based on user behavior, search queries, and similarity metrics.

33 Social Networking
& Media Platforms

User interfaces for online social networking services, content sharing, and recom-
mendation systems.

34 Digital Media
Content

Tools andplatforms for digitalmedia content creation,management, distribution,
and access.

[F8] Computer Vision

35 Augmented and
Virtual Reality
(AR/VR)

Augmented reality (AR) and virtual reality (VR)models, devices, interfaces, and ex-
periences, including head-mounted displays and interactions in virtual environ-
ments.

36 Machine Learning
& Neural Networks

Machine learning training techniques, model architectures, and data processing
for computer vision applications.

37 Medical Imaging &
Image Processing

Diverse applications for acquiring and analyzing medical images from various
modalities, such as computed tomography (CT), ultrasound,magnetic resonance
imaging (MRI), and virtual reality (VR), for purposes including diagnosis, surgical
planning, and the design of prostheses.

[F9] HealthTech

38 Health Monitoring Wearable and implantable devices and systems for real-time health monitoring
that track vital signs such as blood pressure, heart rate, and temperature, coupled
with comprehensive medical data management.

39 Medical
Information

A combination of data sharing, encryption, and Natural Language Processing
(NLP) technologies for the storage, retrieval, and management of medical and pa-
tient information, encompassing electronic medical records, prescription man-
agement, and remote healthcare services.

40 E-Healthcare An integration of data sharing, wireless communication, monitoring, and user in-
terface technologies for healthcare and health management systems, including
those used in hospitals and cloud-based platforms.
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Table A.4: Average Employment Share by Sector of Activities in 2010

Emp. Share
NACE Sector Mean SD Shock

A Agriculture 0.068 0.010 0.42
B-E Industry, excluding Construction 0.179 0.006 1.38
F Construction 0.076 0.000 1.19
G-I Market Services, excluding Information and Communication 0.238 0.001 1.94
J Information and Communication 0.026 0.000 4.30
K Financial and Insurance Activities 0.028 0.000 1.56
L Real Estate Activities 0.007 0.000 0.95
M-N Professional, Scientific, Technical, Administration and Support Services 0.083 0.001 2.59
O-Q Public Administration, Defence, Education, Human Health and Social Work 0.237 0.004 0.70
R-U Other Services 0.053 0.000 1.04
Notes: This table presents the employment share and sectoral shockby sector of activities averaged across all the European
regions in 2010. Regions areweightedbypopulation in 2010. Thefirst column indicates the 1-digitNACEcodes, the second
column is the nameof theNACE sector, the third column is the average employment share in 2010, the fourth columngives
the standard errors, and the fifth column is the shock, as measured by the sectoral exposure to digital technologies.

Figure A.2: Employment Effects of Neutral Digital Technologies by Skill Groups

Notes: This figure summarizes the IV estimates of the employment impact of labor-neutral digital technologies
by skill groups. Confidence intervals are derived following the AKM0 inference procedure fromAdão et al. (2019).
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Online Appendix
The Employment Impact of Emerging Digital Technologies

Ekaterina Prytkova, Fabien Petit, Deyu Li, Sugat Chaturvedi, Tommaso Ciarli

OA.1 Patent Corpus Construction

Query and Patent Corpus. The patent corpus in Chaturvedi et al. (2023) is constructed by
querying theDerwent Innovation Index (DII) database. Thequery has two components, using
patent codes (Derwent Manual Codes and International Patent Classification codes) and key-
words from previous studies on digital automation technologies and Industry 4.0 (Cockburn
et al. 2019; Webb 2019; Martinelli et al. 2021). The first component retrieves digital automa-
tion inventions related to i) process and machine control in physical production sectors like
manufacturing, agriculture, mining, and construction, and ii) process and workflow control
in services. The second component narrows the sample to large technology families, such as
AI, computing, networking, datamanagement, anduser interfaces, basedonprior researchon
emerging digital technologies (Savona et al. 2022). The final sample includes 1,143,033 patent
families from 2000 to 2021. Figure OA.1 illustrates the SQL-style structure of the query, with
the full details available in the Online Appendix.

Patent Embeddings. To analyze emerging digital technologies, Chaturvedi et al. (2023) con-
catenate patent titles and abstracts to create embeddings. Using the pre-trained sentence
transformer model all-mpnet-base-v2 (Song et al. 2020), each patent text is mapped into a
768-dimensional space, converting text into semantic vectors. This transformation enables
large-scale analysis and comparison of document meanings using other ML and NLP meth-
ods.

Core Digital Patents. To identify the backbone of the corpus of digital automation inven-
tions, the Local Outlier Factor (LOF) algorithm is employed. Proposed by Breunig et al. (2000),
LOF is an anomaly detection algorithmappliedbyChaturvedi et al. (2023) to search for seman-
tic core among patents. Thus, it measures the local density of a focal document compared to
the local density of its k-nearest neighbors in the semantic space. The locality (i.e., the size
of the neighborhood) is set by the parameter 𝑘. A document with a notably dense neighbor-
hood is considered part of the backbone. For identification of the backbone among digital
innovations, larger values of 𝑘 are more suitable as they allow for larger neighborhoods and
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Figure OA.1: SQL-Stylized Structure of the Patent Query

SELECT Process and machine control in production AS A,
Process and workflow control in services AS B

FROM Derwent Innovation Index
WHERE technology IN (Networking,

Data acquisition,
Data management,
AI and Intelligent Systems,
User Interfaces,
Computing)

AND year BETWEEN 2000 AND 2021

UNION

SELECT Additive manufacturing AS C
FROM Derwent Innovation Index
WHERE year BETWEEN 2000 AND 2021

Notes: This figure presents the structure of the patent query used to construct the total sample in Chaturvedi
et al. (2023). The list of CPC codes in A, B, and C is available in Chaturvedi et al. (2023).

hence, a wider reference group of patents to compute LOF measure. Chaturvedi et al. (2023)
use 𝑘 = 1000 and the LOF measure is computed for each patent in year 𝑡 using the cumulative
set of patents up to year (𝑡−1).

Since Chaturvedi et al. (2023) are interested in emerging digital automation technologies
whose impact on labor markets is unfolding, they identify established/core digital patents in
the most recent decade of the patent sample, i.e., 2012–2021. They begin with a base sample
of 258,344 patents from 2001-–2011 and calculate the LOF measure for each year from 2012
to 2021, updating the base sample iteratively. For example, to compute the LOF measure for
patents filed in 2014, the base sample includes patents from 2001–2013.

Lastly, core patents are defined as those in the bottom 10% of the LOF measure for each
year over the 2012–2021 period. These patents form the backbone of the patent corpus, being
the most representative of digital automation technologies. A low LOF measure indicates a
dense semantic neighborhood, meaning these patents are highly central within their local
semantic spaces.

Offshoots. To track the development of these core technological innovations throughout
the 2012–2021 period, Chaturvedi et al. (2023) identify their offshoots (i.e., subsequent inven-
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tions that build on and are semantically similar to the core ones). For each core patent, the
authors compute cosine similarity to all patents in each subsequent year and define as off-
shoots patents in the top 10% of cosine similarity within each year.

The final patent corpus 𝒫 comprises 190,714 core digital automation patents and their
offshoots.

OA.2 Filtering Pairs Using Redundancy

To filter out irrelevant pairs, we incorporate redundancy in calculating cosine similarity for
industry–patent pairs (𝑖,𝑝). For each patent, we rank the sub-pairs (𝑖,𝑝1) and (𝑖,𝑝2) sepa-
rately by their cosine similarity scores, 𝐶𝑝1

𝑖 and 𝐶𝑝2
𝑖 . We then classify a pair (𝑖,𝑝) as relevant

(denoted as (𝑖,𝑝)⋆) if both sub-pairs rank within the top 10 in their respective lists. This ap-
proach excludes pairs that do not achieve a top-10 rank for both components. Thus, we retain
only those inventions where both the description and function are relevant to the industry.
The redundancy is robust to thresholds other than the top 10.

Additionally, we manually exclude three very specific connections to improve our expo-
sure scores. We make the following manual adjustments:

• We exclude the exposure scores that relate to ‘Printing and service activities related to
printing’ (18.1) due to the persistent conflation of its intended meaning (i.e. printing
products with text, symbols (e.g. musical notation), and imagery (e.g. maps, engraving,
etc.)) with emerging digital technologies.

• We exclude the sentence “manufacture of computer printout paper ready for use” (Sen-
tence ID 17.2_11) from the industry description text of ‘Manufacture of articles of paper
and paperboard’ (17.2) when combining tasks with patents belonging to the technolo-
gies within the 3D Printing family.

• We exclude the sentence “units giving this type of instructions might be named “schools”,
“studios”, “classes” etc.” (Sentence ID85.5_17) fromthe industrydescription text of ‘Other
education’ (85.5) when combining tasks with patents belonging to the technology Ma-
chine Learning.

For each identified relevant pair (𝑖,𝑝)⋆, we calculate the harmonicmean of the cosine sim-
ilarity scores for both the invention’s description and its function. This yields the composite
cosine similarity score for industry–patent pairs:

𝐶𝑝
𝑖 = 2( 1

𝐶𝑝1
𝑖

+ 1
𝐶𝑝2

𝑖
)

−1
.
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This establishes a connection between an invention, identified in a single patent 𝑝 ∈ 𝒫, and
a set of relevant industries, where the innovation can enhance process, output, or organiza-
tional aspects.

Table OA.1 illustrates the redundancy principle using our patent example, which details a
targeted TV advertising method based on user profile information. For this patent, redun-
dancy filters out industries irrelevant to the innovation, such as ‘Activities of employment
placement agencies( (78.1) and ‘Beverage serving activities’ (56.3).

Table OA.1: Example of Redundancy Filtering of Industries for Targeted TV Advertising

Cosine Similarity
Code NACE Industry 𝐶𝑝1

𝑖 𝐶𝑝2
𝑖 𝐶𝑝

𝑖

60.2 Television programming and broadcasting activities 0.391 0.445 0.416
73.1 Advertising 0.458 0.373 0.411
73.2 Market research and public opinion polling 0.295 0.272 0.283
59.1 Motion picture, video and television programme activities 0.271 0.263 0.267
61.2 Wireless telecommunications activities 0.290 0.229 0.256
26.3 Manufacture of communication equipment 0.257 0.240 0.249
78.1 Activities of employment placement agencies 0.265
47.9 Retail trade not in stores, stalls or markets 0.263
56.3 Beverage serving activities 0.261
80.1 Private security activities 0.253
61.3 Satellite telecommunications activities 0.294
61.1 Wired telecommunications activities 0.237
97.0 Activities of households as employers of domestic personnel 0.231
58.1 Publishing of books, periodicals and other publishing activities 0.223

Notes: This table presents the redundancy filtering of industries for the Patent ID 2013B87254. It displays the
cosine similarity of distinct 3-digit NACE Rev.2 industry descriptions with the patent description “Method
for targeting television advertisement based on profile linked to online device” (Column 3) and the function
principle “selecting television advertisement to be directed to set-top box based on profile information per-
taining to the user or online activity” (Column 4). Industries are ranked according to Column 3 in decreasing
order. Cosine similarity scores in Columns 3 and 4 are displayed only for sub-pairs belonging to their respec-
tive top 10. Column 5 shows the composite patent-industry cosine similarity score, which corresponds to the
harmonic mean of Columns 3 and 4. Cosine similarity scores in Column 5 are displayed only for pairs that
rank simultaneously in both the top 10.

OA.3 Methodology for Occupation Exposure Scores

Patent Level Similarity. The methodology to derive occupation exposure scores is analo-
gous to thatof industryones. FigureOA.2 illustratesourmethodology toobtainpatent–occupation
cosine similarity scores using our patent example on Targeted TV Advertising and the occupa-
tion Advertising and marketing professionals (2431).
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Figure OA.2: One-to-One Matching Pipeline: Patent–Occupation Exposure Score with Sen-
tence Transformer all-base-mpnet-v2

Patent 2013B87254
𝑝: Method for targeting TV adver-
tisement based on profile linked to
device, involves selecting TV adver-
tisement to be directed to set-top
box based on profile information
pertaining to user or online activity

Advertising and Marketing Profes-
sionals (2431)
title: Advertising and marketing pro-
fessionals

𝑠1: planning, developing and orga-
nizing advertising policies and cam-
paigns to support sales objectives;
𝑠2: advising managers and clients
on strategies and campaigns to reach
target markets, creating consumer
awareness…

⋮
𝑠𝑛: advising on all elements of mar-
keting such as product mix, pricing,
advertising and sales promotion, sell-
ing and…

Embeddings 𝑝
𝐸𝑝 = (𝑒1

𝑝,…,𝑒768
𝑝 )

Embeddings 𝑠𝑜

𝐸title = (𝑒1
title,…,𝑒768

title )

𝐸𝑠1
= (𝑒1

𝑠1
,…,𝑒768

𝑠1
)

𝐸𝑠2
= (𝑒1

𝑠2
,…,𝑒768

𝑠2
)

⋮
𝐸𝑠𝑛

= (𝑒1
𝑠𝑛

,…,𝑒768
𝑠𝑛

)

MPNet v2

MPNet v2

Cosine Similarity

𝑝
title 0.413
𝑠1 0.439
𝑠2 0.502

⋮ ⋮
𝑠𝑛 0.469

Max Pooling

𝐶𝑝
𝑜1

≡ cos(𝐸𝑝,𝐸title)
𝐶𝑝

𝑜2
≡ max𝑠 cos(𝐸𝑝,𝐸𝑠)

The left part of the diagram represents the preprocessed input text. The top-left box con-
tains the patent text 𝑝, while the bottom-left box contains the description of the occupation:
its title and the task description that we split into 𝑛 individual tasks 𝑠 ∈ {1,…,𝑠𝑛}.

The next part illustrates the transformation of the input text into corresponding embed-
dings. Applying the sentence transformers MPNet v2, we obtain one patent embedding and
𝑛+1 occupation embeddings—one for each task 𝑠 and one for the title.

The rightmost part illustrates the calculation of the cosine similarity scores. Each element
of the vector corresponds to ameasure of semantic similarity between the patent and the title,
as well as each task 𝑠 of the occupation description. Then, we select the most similar task,
obtaining two values of cosine similarity: 𝐶𝑝

𝑜1
and 𝐶𝑝

𝑜2
. No aggregation is needed for 𝑜1 as each

occupation has only one title. These scalars summarize the quality of the semantic match
between an occupation and a patent, either through the occupation’s title or its associated
tasks. We repeat this procedure for each patent–occupation combination.
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Redundancy. We then apply the same redundancy methodology as for industries, designat-
ing occupation–patent pairs (𝑜,𝑝) as relevant (denoted (𝑜,𝑝)⋆) if both sub-pairs (𝑜1,𝑝) and
(𝑜2,𝑝) rank within the top 10 of their respective lists. This way, we retain only inventions rele-
vant to the occupation.

As with industries, we manually exclude three specific connections to improve our expo-
sure scores. We make the following manual adjustments:

• Analogously with industry 18.1, we exclude the exposure scores that relate to ‘Printing
tradesworkers’ (732) and its nested occupations (7321, 7322, 7323) due to the persistent
conflation of its intended meaning with emerging digital technologies.

• We exclude the task “creating the blueprint or pattern pieces for a particular apparel de-
sign with the aid of a computer;” (Task ID 7532_2) from the occupation description text
of ‘Printers’ (7532) when combining tasks with patents belonging to the technology Ma-
chine Learning.

• We exclude the task “preparing and developing instructional training material and aids
such as handbooks, visual aids, online tutorials, demonstration models and supporting
training reference documentation;” (Task ID 2424_3) from the occupation description
text of ‘Training and staffdevelopment professionals’ (2424)when combining taskswith
patents belonging to the technology Machine Learning.

For each relevant pair, we calculate the harmonic mean of both cosine similarity scores,
yielding the composite cosine similarity score for occupation–patent pairs (𝑜,𝑝)⋆ as:

𝐶𝑝
𝑜 = 2( 1

𝐶𝑝
𝑜1

+ 1
𝐶𝑝

𝑜2
)

−1
.

This establishes a connection between an invention, identified in a single patent, and a set of
relevantoccupations,where the innovationcanbeused. TablesOA.2 illustrate the redundancy
principle for our example.

OA.4 Comparing Exposure Scores with Other Metrics

We compare our occupational exposure scores with metrics from Frey and Osborne (2017),
Webb (2019), and Felten et al. (2021), which provide exposure scores for specific digital tech-
nologies that are subsets of our list. Challenges in comparison are the different occupational
classifications and variations in the definitions of technologies among the studies. To address
classification differences, we use crosswalks between classifications, aggregating exposure
scores within a 4-digit ISCO-08 occupation by averaging exposures across all matched occu-
pations. We compute the correlation between our exposure scores for each technology and
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Table OA.2: Example of Redundancy Filtering of Occupations for Targeted TV Advertising

Cosine Similarity
Code ISCO Occupation 𝐶𝑝

𝑜1 𝐶𝑝
𝑜2 𝐶𝑝

𝑜

2431 Advertising and marketing professionals 0.413 0.502 0.453
1222 Advertising and public relations managers 0.308 0.420 0.356
3521 Broadcasting and audio-visual technicians 0.274 0.380 0.318
3322 Commercial sales representatives 0.250 0.394 0.306
2434 ICT sales professionals 0.297
7422 ICT installers and servicers 0.282
4227 Survey and market research interviewers 0.279
2656 Announcers on radio, television and other media 0.278
1330 ICT service managers 0.262
3512 ICT user support technicians 0.252
5242 Sales demonstrators 0.396
1420 Retail and wholesale trade managers 0.393
3432 Interior designers and decorators 0.388
2153 Telecommunications engineers 0.374
3323 Buyers 0.358
9520 Street vendors (excluding food) 0.357

Notes: This table presents the redundancyfiltering of occupations for thePatent ID2013B87254 (i.e., “Method
for targeting television advertisement based on profile linked to online device, involves selecting television
advertisement tobedirected to set-topboxbasedonprofile informationpertaining touser or online activity”).
It displays the cosine similarity of the patent title with the 4-digit ISCO-08 title (Column 3) and the task with
the highest cosine similarity (Column 4). Occupations are ranked according to Column 3 in decreasing order.
Cosine similarity scores in Columns 3 and 4 are displayed only for sub-pairs belonging to their respective
top 10. Column 5 shows the composite patent-occupation cosine similarity score, which corresponds to the
harmonic mean of Columns 3 and 4. Cosine similarity scores in Column 5 are displayed only for pairs that
rank simultaneously in both the top 10.

those obtained with these metrics at the 4-digit ISCO-08 level and report the correlations as a
heatmap in Figure OA.3.

The figure reveals several insights. First, our exposure metrics correlate overall with those
in the literature. The robot and software exposure scores inWebb (2019) alignwith ourmetrics
across a range of emerging digital technologies. Specifically, Webb’s robot exposure scores
are highly correlated with our tangible emerging digital technologies and capture occupation
exposure to industrial robots.

Conversely, we find that AI exposure scores in Webb (2019) are confined to core AI appli-
cations, such as some embedded technologies (i.e., energy management, industrial automa-
tion, and remote monitoring) and data-intensive technologies (i.e., machine learning, work-
flow management systems, and cloud computing), thus missing broader AI applications like
medical imaging or information processing.

Exposure scores in Felten et al. (2021) correlate with a broader set of our technologies,
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Figure OA.3: Correlation of Occupation Exposure with Other Metrics in the Literature

Notes: Thisfigurepresents thecorrelationbetweenoccupational exposure scores todigital technologies (column)
and other occupational exposure metrics available in the literature (rows), both measured at the 4-digit ISCO-08
level. Each cell shows the Spearman correlation ranging from -1 to 1. Correlations with a p-value above 0.05 are
transparent. Exposure scores in the literature are from Felten et al. (2021), Webb (2019), and Frey and Osborne
(2017) and are converted into 4-digit ISCO-08 exposure scores using several crosswalks.

indicating they cover a wider spectrum of AI applications as compared to Webb (2019). How-
ever, they are negatively correlated with embedded systems as none of the 10 AI applications
considered in theirmetric includes any embedded AI, reflecting that their exposure scores are
more oriented toward high-skilled jobs.

Lastly, software exposure in Webb (2019) and computerization exposure in Frey and Os-
borne (2017) correlate with a large segment of our emerging digital technologies. However,
the magnitudes of these correlations are smaller, as both computerization and software are
inherent to emerging digital technologies.

OA.5 Task Exposure

FigureOA.4 displays themost exposed tasks, expressed as gerunds, for 1-digit ISCO-08 groups.
It highlights actions to which emerging digital technologies are the most relevant.

OA.6 Placebo Estimates

To further validate the shift-share approach, we conduct a placebo analysis by estimating the
effect of regional exposure to emerging digital technologies on the change in the employment-
to-population ratio during the pre-period (2002–-2009). The results are presented in Table
OA.3. We find no evidence of regional exposure effects in the pre-period across any demo-
graphic and skill groups.

The placebo analysis is based on the pre-period (2002–-2009), but employment data for
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Figure OA.4: Task Exposure to Emerging Digital Technologies and Task Frequency by 1-digit
ISCO-08 Occupation Groups

Notes: This figure displays the exposure of tasks, which are summarized with their gerunds, to emerging digital
technologies and their frequency among 1-digit ISCO-08 occupations. The task frequency (on the x-axis) is the
gerund’s baseline (relative) frequency, which indicates how often the gerund appears in the ISCO-08 classifica-
tionof that 1-digit group. The task exposure (on the y-axis) is the gerund’s (relative) frequency in the target corpus
weighted by the cosine similarity, which indicates howoften the gerund appears in the exposed occupations. The
dashed line is the 45-degree line.

2002 are unavailable in 62 regions, requiring us to restrict the sample to 258 regions. Esti-
mating the baseline empirical specification for the period 2012–2019 for this restricted sam-
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Table OA.3: Placebo Estimates of the Effect of Emerging Digital Technologies on Regional Em-
ployment by Demographic Groups

Dep. var: Δ Emp-to-pop. Ratio (2002-2009) × 100
All Gender Age Skill

Total Female Male Y15-24 Y25-64 Low Mid High
(1) (2) (3) (4) (5) (6) (7) (8)

Exposure (Standardized) −0.176 −0.067 −0.109 −0.010 −0.175 −0.042 −0.089 0.318∗

(0.263) (0.145) (0.162) (0.102) (0.244) (0.193) (0.196) (0.186)
Emp-to-pop. Ratio in 2012 50.93 22.25 28.69 5.70 45.23 14.22 24.52 11.39
Change (in %) −0.35 −0.30 −0.38 −0.17 −0.39 −0.29 −0.36 2.79
R2 0.713 0.709 0.766 0.676 0.692 0.747 0.767 0.625
Adj. R2 0.667 0.663 0.729 0.625 0.643 0.708 0.731 0.565
Num. obs. 258 258 258 258 258 258 258 258
Notes: This table presents the placebo estimates of exposure to emerging digital technologies on regional employment
by demographic groups. It presents the coefficients measuring the effect of regional exposure to emerging technologies,
constructed as shift-shares and standardized, on changes in the employment-to-population ratio between 2002 and 2009
in European regions, expressed in percentage points, for all workers, female and male workers, young (aged 15-24) and
mature (aged 25-64) workers, and low-, middle-, and high-skilled workers. Regressions are weighted by population in
2010. All columns include country fixed effects; demographics controls in 2010, including the logarithmof population, the
proportion of females, the proportion of the population aged over 65, the proportions of the population with secondary
and tertiary education levels; and the share of employment in the industry sector. ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1.
Standard errors between parentheses are derived following the AKM0 inference procedure from Adão et al. (2019).

ple yields similar estimates to those of the baseline estimates. This suggests that the placebo
analysis results are not influenced by the exclusion of specific regions. These estimates are
available upon request.

OA.7 Individual Technology Impact Regression Tables
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Table OA.4: Employment Effect of 3D Printing, Embedded Systems, Smart Mobility, and Food
Ordering

Effect of a 1-STD ↑ in Exp. on the Emp-to-pop. Ratio
(1) (2) (3) (4)

3D Printer Hardware 0.11 −3.42∗∗∗ −0.15∗ 3.37∗∗

(0.27) (0.78) (0.09) (1.32)
3D Printing 0.17 1.28∗∗∗ −0.21∗∗ −1.84∗∗∗

(0.24) (0.18) (0.12) (0.39)
Additive Manufacturing 0.14 −0.11 −0.11 2.62∗∗∗

(0.24) (1.09) (0.08) (0.36)
Smart Agriculture −1.24∗∗∗ −1.32∗∗∗ −0.89∗∗∗ −1.26∗∗∗

(0.15) (0.09) (0.08) (0.07)
IoT −1.36∗∗∗ −1.40∗∗∗ −1.06∗∗∗ −1.18∗∗∗

(0.11) (0.09) (0.08) (0.06)
Energy Management 0.50∗∗ 0.70∗∗∗ 0.04 0.46∗∗∗

(0.19) (0.08) (0.15) (0.08)
Industrial Automation −0.09 1.05 −0.66∗∗∗ −3.58∗∗∗

(0.16) (1.18) (0.11) (0.63)
Remote Monitoring 0.51∗∗ 1.48∗∗∗ −0.11 1.27∗∗∗

(0.22) (0.04) (0.24) (0.23)
Smart Home 0.80∗∗∗ 0.96∗∗∗ 0.47∗ 0.83∗∗∗

(0.13) (0.03) (0.21) (0.12)
Intelligent Logistics 0.52∗∗ −0.79∗∗∗ −0.25 −0.82∗∗∗

(0.18) (0.27) (0.28) (0.16)
Autonomous Vehicles 0.85∗∗∗ 0.39 0.50∗ 0.42

(0.14) (0.54) (0.26) (0.45)
Parking Management 0.76∗∗∗ 0.29 0.62∗∗∗ 0.28

(0.11) (0.56) (0.16) (0.48)
Vehicle Telematics 0.85∗∗∗ 0.93∗∗ 1.22∗∗∗ 1.33∗∗∗

(0.11) (0.68) (0.30) (0.54)
Passenger Transportation 0.87∗∗∗ 0.62∗∗ 0.68∗∗∗ 0.61∗∗

(0.14) (0.15) (0.21) (0.18)
Food Ordering 0.60∗∗ 0.60∗∗ −0.14 −0.14

(0.18) (0.18) (0.44) (0.44)
Controlling for Technology Complementarity

Within Family ✓ ✓
Between Family ✓ ✓
Notes: This table presents the estimates of the employment effect of individual digital technologies
with and without controlling for technology complementarity. Each entry is a separate regression.
∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses are derived following the
AKM0 inference procedure from Adão et al. (2019).
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Table OA.5: Employment Effect of E-Commerce, Payment Systems, Computer Vision, and
HealthTech

Effect of a 1-STD ↑ in Exp. on the Emp-to-pop. Ratio
(1) (2) (3) (4)

Digital Advertising 0.89∗∗∗ 0.13 0.20 0.39
(0.15) (0.24) (0.40) (0.46)

E-Trading 0.83∗∗∗ 0.61∗∗∗ 0.17 0.13
(0.15) (0.33) (0.96) (0.82)

Online Shopping 0.75∗∗∗ −0.47 −0.12 −0.91
(0.16) (0.80) (0.73) (1.05)

E-Coupons 0.86∗∗∗ −0.82∗ 0.13 0.02
(0.15) (0.55) (0.37) (0.97)

E-Payment 0.99∗∗∗ 0.98∗ 0.74 0.76
(0.16) (0.71) (0.88) (0.95)

Mobile Payment 0.79∗∗∗ −0.99∗∗∗ −0.23 −1.71∗∗∗

(0.16) (0.13) (1.13) (0.47)
Gaming 1.14∗∗∗ 0.86∗∗∗ 0.75∗∗∗ 0.90∗∗∗

(0.15) (0.20) (0.14) (0.20)
AR/VR 0.99∗∗∗ 1.11∗∗∗ 0.15 0.22

(0.16) (0.20) (0.69) (0.61)
Machine Learning 0.23 −1.05∗∗∗ −0.29∗∗ −0.90∗∗∗

(0.21) (0.16) (0.10) (0.15)
Medical Imaging 0.62∗∗∗ −0.28 −0.12 0.40

(0.26) (0.48) (0.28) (0.46)
Health Monitoring 1.28∗∗∗ 0.48 0.67∗∗∗ −0.01

(0.18) (0.50) (0.20) (0.24)
Medical Information 1.30∗∗∗ 1.54∗ 0.87∗∗∗ 0.97∗

(0.17) (0.88) (0.10) (0.54)
E-Healthcare 1.29∗∗∗ −1.51∗∗∗ 0.79∗∗∗ −0.15

(0.20) (0.81) (0.09) (1.36)
Controlling for Technology Complementarity

Within Family ✓ ✓
Between Family ✓ ✓
Notes: This table presents the estimates of the employment effect of individual digital tech-
nologies with and without controlling for technology complementarity. Each entry is a sepa-
rate regression. ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses are
derived following the AKM0 inference procedure from Adão et al. (2019).
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Table OA.6: Employment Effect of Digital Services

Effect of a 1-STD ↑ in Exp. on the Emp-to-pop. Ratio
(1) (2) (3) (4)

Digital Authentification 1.16∗∗∗ 0.67 0.70∗∗∗

(0.15) (1.78) (0.15)
E-Learning 1.09∗∗∗ 0.32∗ 0.58∗∗∗ 0.74∗∗∗

(0.19) (0.18) (0.13) (0.25)
Location-Based Services 0.84∗∗ 0.47∗∗ 0.49∗∗ 0.44∗∗

(0.16) (0.23) (0.15) (0.19)
Voice Communication 0.85∗∗∗ 0.10 −0.46 −1.74

(0.15) (0.45) (1.34) (1.81)
Electronic Messaging 0.85∗∗∗ −1.18∗∗ −1.85∗∗ −5.01∗∗∗

(0.17) (1.42) (0.58) (0.39)
Workflow Management 1.17∗∗∗ 0.93 0.83∗ 1.07

(0.16) (0.91) (0.42) (0.88)
Cloud Storage 0.87∗∗∗ −0.14 −0.87 −1.24

(0.18) (1.17) (0.82) (0.76)
Information Processing 0.86∗∗∗ 0.42∗ 0.27 0.88

(0.16) (0.37) (1.37) (1.32)
Cloud Computing 1.07∗∗∗ −0.08 0.45 0.24

(0.16) (0.99) (0.31) (1.26)
Recommender Systems 0.94∗∗∗ −0.49∗ 0.32∗ −0.70

(0.15) (0.51) (0.15) (1.07)
Social Networking 1.08∗∗∗ −0.95∗∗ 0.33∗∗ −1.73∗∗∗

(0.15) (0.32) (0.14) (0.48)
Digital Media Content 0.89∗∗∗ −1.81∗∗∗ −0.94∗∗∗ −3.57∗∗∗

(0.16) (0.68) (0.36) (0.33)
Controlling for Technology Complementarity

Within Family ✓ ✓
Between Family ✓ ✓
Notes: This table presents the estimates of the employment effect of individual digital technologies
with and without controlling for technology complementarity. Each entry is a separate regression.
∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses are derived following the
AKM0 inference procedure from Adão et al. (2019).
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Table OA.7: Employment Effect of 3D Printing, Embedded Systems, Smart Mobility, and Food
Ordering, by Demographic and Skill Groups

Effect of a 1-STD ↑ in Exp. on the Emp-to-pop. Ratio
Total Female Male Y15-24 Y25-64 Low Mid High

3D Printer Hardware 3.37∗∗ 2.89∗∗ 0.49 −0.28 3.64∗∗ 6.17∗∗∗ 1.25 −3.64∗∗

(1.32) (1.12) (0.43) (0.21) (1.17) (1.57) (1.09) (0.96)
3D Printing −1.84∗∗∗ −1.74∗∗∗ −0.10 −0.00 −1.84∗∗∗ −3.32∗∗∗ −0.18 1.52∗∗∗

(0.39) (0.29) (0.15) (0.08) (0.34) (0.49) (0.34) (0.28)
Additive Manufacturing 2.62∗∗∗ 2.67∗∗∗ −0.05 0.09 2.52∗∗∗ 3.79∗∗∗ 0.65 −1.77∗∗∗

(0.36) (0.28) (0.15) (0.10) (0.30) (0.52) (0.33) (0.33)
Smart Agriculture −1.26∗∗∗ −1.12∗∗∗ −0.14∗∗∗ −0.13∗∗∗ −1.13∗∗∗ −2.00∗∗∗ −0.51∗∗∗ 1.18∗∗∗

(0.07) (0.06) (0.02) (0.02) (0.06) (0.09) (0.08) (0.04)
IoT −1.18∗∗∗ −1.01∗∗∗ −0.16∗∗∗ −0.10∗∗∗ −1.08∗∗∗ −1.71∗∗∗ −0.67∗∗∗ 1.14∗∗∗

(0.06) (0.06) (0.03) (0.03) (0.05) (0.10) (0.08) (0.05)
Energy Management 0.46∗∗∗ 0.48∗∗∗ −0.02 −0.01 0.47∗∗∗ 0.63∗∗∗ 0.42∗∗∗ −0.56∗∗∗

(0.08) (0.07) (0.02) (0.02) (0.06) (0.10) (0.05) (0.04)
Industrial Automation −3.58∗∗∗ −2.98∗∗∗ −0.61∗∗∗ −0.59∗∗∗ −3.00∗∗∗ −4.20∗∗∗ −1.41∗∗∗ 2.13∗∗∗

(0.63) (0.67) (0.12) (0.05) (0.62) (0.97) (0.33) (0.58)
Remote Monitoring 1.27∗∗∗ 1.28∗∗∗ −0.00 0.22∗∗∗ 1.06∗∗∗ 1.83∗∗∗ 0.86∗∗∗ −1.38∗∗∗

(0.23) (0.20) (0.07) (0.03) (0.22) (0.28) (0.06) (0.11)
Smart Home 0.83∗∗∗ 0.81∗∗∗ 0.02 0.04∗ 0.78∗∗∗ 1.15∗∗∗ 0.48∗∗∗ −0.77∗∗∗

(0.12) (0.09) (0.03) (0.02) (0.10) (0.11) (0.05) (0.04)
Intelligent Logistics −0.82∗∗∗ −0.50∗∗∗ −0.32∗∗∗ −0.22∗∗∗ −0.59∗∗∗ −0.84∗∗∗ 0.14 −0.02

(0.16) (0.19) (0.06) (0.02) (0.16) (0.16) (0.19) (0.15)
Autonomous Vehicles 0.42 0.34 0.07 0.13 0.28 0.48 −0.10 −0.05

(0.45) (0.35) (0.23) (0.08) (0.40) (0.64) (0.31) (0.22)
Parking Management 0.28 0.62∗∗∗ −0.34∗ −0.24∗∗ 0.52∗∗∗ −0.01 1.35∗∗∗ −0.98∗∗∗

(0.48) (0.35) (0.14) (0.08) (0.41) (0.56) (0.13) (0.19)
Vehicle Telematics 1.33∗∗∗ 1.33∗∗∗ 0.00 −0.07 1.40∗∗∗ 1.21∗∗ 1.49∗∗∗ −1.35∗∗∗

(0.54) (0.36) (0.27) (0.12) (0.43) (0.69) (0.47) (0.40)
Passenger Transportation 0.61∗∗ 0.26∗ 0.35∗∗ 0.17∗∗ 0.44∗∗ 1.01∗∗ −0.57∗∗ 0.14∗∗

(0.18) (0.14) (0.10) (0.04) (0.17) (0.18) (0.14) (0.13)
Food Ordering −0.14 −0.06 −0.08 −0.10∗∗ −0.05 0.19 −0.10 −0.17

(0.44) (0.37) (0.12) (0.08) (0.37) (0.57) (0.20) (0.25)
Notes: This table presents the estimates of the employment effect of individual digital technologies by demographic and skill
groups. Each entry is a separate regression. ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses are derived
following the AKM0 inference procedure from Adão et al. (2019).
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Table OA.8: Employment Effect of E-Commerce, Payment Systems, Computer Vision, and
HealthTech, by Demographic and Skill Groups

Effect of a 1-STD ↑ in Exp. on the Emp-to-pop. Ratio
Total Female Male Y15-24 Y25-64 Low Mid High

Digital Advertising 0.39 0.19 0.20∗ 0.31∗∗ 0.09 0.78 −0.19 −0.26
(0.46) (0.34) (0.17) (0.18) (0.35) (0.59) (0.40) (0.37)

E-Trading 0.13 −0.26 0.39∗ −0.27∗∗ 0.40 −1.01∗∗ 0.21 0.84
(0.82) (0.68) (0.21) (0.47) (0.66) (1.53) (1.19) (0.89)

Online Shopping −0.91 −0.20 −0.71∗∗∗ −0.26∗∗∗ −0.66 0.38 −0.54∗∗ −0.55
(1.05) (0.90) (0.20) (0.14) (0.93) (1.38) (0.34) (0.61)

E-Coupons 0.02 −0.70 0.73 0.35∗∗∗ −0.34 −0.23 −0.73 1.05
(0.97) (0.58) (0.61) (0.17) (0.97) (1.05) (0.68) (0.70)

E-Payment 0.76 0.10 0.65∗∗∗ −0.13 0.91 −0.83 1.72∗∗∗ −0.28
(0.95) (0.74) (0.31) (0.14) (0.95) (1.15) (0.72) (0.94)

Mobile Payment −1.71∗∗∗ −1.49∗∗∗ −0.22∗∗∗ −0.56∗∗∗ −1.16∗∗∗ −2.83∗∗∗ −0.68∗∗∗ 1.81∗∗∗

(0.47) (0.44) (0.07) (0.10) (0.41) (0.58) (0.27) (0.32)
Gaming 0.90∗∗∗ 0.57∗∗∗ 0.34∗∗∗ 0.36∗∗∗ 0.55∗∗∗ 1.83∗∗∗ −0.52∗∗ −0.38∗∗

(0.20) (0.17) (0.05) (0.04) (0.19) (0.31) (0.17) (0.25)
AR/VR 0.22 −0.14 0.36∗∗ 0.16∗ 0.06 −0.28 −0.35 0.75

(0.61) (0.54) (0.22) (0.09) (0.59) (0.68) (0.59) (0.62)
Machine Learning −0.90∗∗∗ −0.47∗∗∗ −0.43∗∗∗ −0.21∗∗∗ −0.69∗∗∗ −1.23∗∗∗ −0.04 0.38∗∗∗

(0.15) (0.09) (0.10) (0.04) (0.13) (0.16) (0.14) (0.16)
Medical Imaging 0.40 0.44 −0.04 0.02 0.39 0.78 0.83∗∗∗ −1.13∗∗∗

(0.46) (0.41) (0.11) (0.11) (0.38) (0.65) (0.23) (0.29)
Health Monitoring −0.01 −0.03 0.02 0.03 −0.03 −0.44 0.73∗∗ −0.27

(0.24) (0.29) (0.24) (0.08) (0.29) (0.46) (0.37) (0.53)
Medical Information 0.97∗ 0.77 0.20 0.14 0.83 2.40∗∗ −0.85 −0.53

(0.54) (0.60) (0.37) (0.13) (0.58) (0.79) (0.83) (1.01)
E-Healthcare −0.15 −0.26 0.10 0.50∗∗ −0.64 0.43 −2.87∗∗∗ 1.91∗

(1.36) (1.30) (0.91) (0.27) (1.38) (1.92) (0.73) (1.13)
Notes: This table presents the estimates of the employment effect of individual digital technologies by demographic and
skill groups. Each entry is a separate regression. ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses
are derived following the AKM0 inference procedure from Adão et al. (2019).
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Table OA.9: Employment Effect of Digital Services by Demographic and Skill Groups

Effect of a 1-STD ↑ in Exp. on the Emp-to-pop. Ratio
Total Female Male Y15-24 Y25-64 Low Mid High

Digital Authentification

E-Learning 0.74∗∗∗ 0.73∗∗∗ 0.01 0.32∗∗∗ 0.43∗ 1.46∗∗∗ 0.28∗ −0.95∗∗∗

(0.25) (0.18) (0.09) (0.03) (0.24) (0.35) (0.15) (0.23)
Location-Based Services 0.44∗∗ 0.43∗∗∗ 0.01 0.01 0.42∗∗ 1.04∗∗∗ −0.03 −0.52∗∗∗

(0.19) (0.14) (0.09) (0.05) (0.18) (0.25) (0.14) (0.15)
Voice Communication −1.74 −1.44 −0.30 −0.48∗∗∗ −1.28 −0.59 −1.11∗∗ 0.30

(1.81) (1.71) (0.23) (0.18) (1.65) (2.54) (0.64) (1.25)
Electronic Messaging −5.01∗∗∗ −4.28∗∗∗ −0.73∗∗ −0.49∗∗∗ −4.53∗∗∗ −6.40∗∗∗ −1.66∗∗ 3.18∗∗∗

(0.39) (0.31) (0.36) (0.17) (0.42) (0.57) (0.58) (0.52)
Workflow Management 1.07 0.88 0.19∗ 0.10 0.97 0.91 0.06 −0.04

(0.88) (0.89) (0.15) (0.16) (0.74) (1.64) (0.34) (0.96)
Cloud Storage −1.24 −1.46∗ 0.22 −0.06 −1.17 −1.67 −0.81 1.39∗∗

(0.76) (0.62) (0.32) (0.19) (0.73) (1.21) (0.64) (0.47)
Information Processing 0.88 0.48 0.41∗ 0.37∗∗ 0.52 2.46 −0.62 −0.68

(1.32) (1.21) (0.26) (0.20) (1.16) (1.96) (0.57) (0.90)
Cloud Computing 0.24 1.05 −0.82∗∗∗ 0.32∗∗ −0.09 1.27 −0.67 −0.47

(1.26) (0.92) (0.37) (0.12) (1.22) (1.40) (0.59) (0.67)
Recommender Systems −0.70 −0.96 0.26 −0.60∗∗∗ −0.11 −1.95 0.24 0.85

(1.07) (0.88) (0.33) (0.14) (0.98) (1.71) (0.69) (1.09)
Social Networking −1.73∗∗∗ −2.29∗∗∗ 0.56∗ −0.43∗∗ −1.31∗∗∗ −5.17∗∗∗ 2.25∗∗∗ 1.00∗

(0.48) (0.31) (0.27) (0.19) (0.51) (0.60) (0.52) (0.49)
Digital Media Content −3.57∗∗∗ −3.30∗∗∗ −0.28∗∗ −0.48∗∗∗ −3.10∗∗∗ −6.18∗∗∗ 0.02 2.41∗∗∗

(0.33) (0.27) (0.11) (0.07) (0.30) (0.23) (0.38) (0.31)
Notes: This table presents the estimates of the employment effect of individual digital technologies by demographic and skill
groups. Each entry is a separate regression. ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors betweenparentheses are derived
following the AKM0 inference procedure from Adão et al. (2019).
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OA.8 Task-BasedModel

OA.8.1 Environment

Consider a continuum of production tasks indexed by their complexity level, denoted by 𝑥 ∈
[0,1 + 𝜂]. The benchmark economy includes a unit measure of tasks, while 𝜂 ≥ 0 represents
the creation of new, higher-complexity tasks enabled by advances in digital technologies.

Thefinal good aggregates tasks using a constant elasticity of substitution (CES) technology
with elasticity 𝜆 ∈ (0,1), according to:

𝑌 = (∫
1+𝜂

0
𝑦(𝑥)𝜆−1

𝜆 𝑑𝑥)
𝜆

𝜆−1

. (4)

The final good serves as the numeraire, with its price normalized to one.
The parameter 𝜂 can be interpreted as a measure of technological frontier expansion: a

higher 𝜂 reflects the creation of new, more complex tasks enabled by ongoing digital inno-
vation. In the model, we treat 𝜂 as exogenous and constant, but it can be endogenized in
extensions where task innovation responds to R&D investments or shifts in factor costs.

Each task 𝑥 can be performed by various factors of production, including different types
of labor 𝑙 ∈ ℒ and capital 𝑘 ∈ 𝒦. The quantity of task 𝑥 produced is given by:

𝑦(𝑥) = ∑
𝑘

𝐴𝑘 ⋅𝜓𝑘(𝑥) ⋅ 𝑘(𝑥)+∑
𝑙

𝐴𝑙 ⋅𝜓𝑙(𝑥) ⋅ 𝑙(𝑥),

where 𝐴𝑘 and 𝐴𝑙 represent factor-augmenting technologies, and 𝜓𝑘(𝑥) and 𝜓𝑙(𝑥) capture the
task-specific comparative advantage of each type of capital and labor, respectively.

The sets ℒ and 𝒦 can accommodate multiple types of labor and capital. For example,
with three types of labor—low-skilled, middle-skilled, and high-skilled—ℒ = {𝐿,𝑀,𝐻}, and
corresponding types of capital 𝒦 = {𝐾𝐿,𝐾𝑀 ,𝐾𝐻}. In the simplest case, there is only one
type of labor and one type of capital. Throughout the analysis, we focus on an economy with
three types of workers.

Each factor of production is supplied inelastically and in fixed quantity. Specifically, the
economy is endowedwith unitmeasures of each labor type and each capital type. We abstract
fromhousehold behavior and savings decisions; themodel focuses exclusively on the produc-
tion side.

The productivity of each factor 𝑗 ∈ 𝒦 ∪ ℒ in task 𝑥 is given by 𝐴𝑗 ⋅ 𝜓𝑗(𝑥) ≥ 0. Here, 𝜓𝑗(𝑥)
captures the relative suitability of factor 𝑗 for task 𝑥 (i.e., its comparative advantage schedule),
while 𝐴𝑗 captures technological improvements that uniformly enhance the productivity of
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factor 𝑗 across all tasks.
We impose a single-crossing structure on the productivity schedules:

𝜓𝐿(𝑥)
𝜓𝐾𝐿

(𝑥),
𝜓𝐾𝑀

(𝑥)
𝜓𝐿(𝑥) , 𝜓𝑀(𝑥)

𝜓𝐾𝑀
(𝑥),

𝜓𝐾𝐻
(𝑥)

𝜓𝑀(𝑥) , 𝜓𝐻(𝑥)
𝜓𝐾𝐻

(𝑥) are increasing in 𝑥.

This structure entails two key properties. First, higher-skilled labor has a comparative advan-
tage in more complex tasks relative to lower-skilled labor. Second, each type of labor has a
comparative advantage over its corresponding capital in more complex tasks, but not neces-
sarily over the capital associated with higher-skilled labor.

Under these conditions, each task price 𝑥 equals the minimum unit cost among all avail-
able production technologies:

𝑝(𝑥) = min{𝑐𝑗}𝑗∈𝒦∪ℒ ,

where unit costs are defined as

𝑐𝑗 ≡ 𝑝𝑗
𝐴𝑗 ⋅𝜓𝑗(𝑥), with 𝑝𝑗 =

⎧{
⎨{⎩

𝑟 ∀𝑗 ∈ 𝒦
𝑤𝑙 ∀𝑗 ∈ ℒ

,

where 𝑟 denotes the rental rate of capital and 𝑤𝑙 the wage rate of labor type 𝑙.
Since 𝜓-schedules satisfy strict increasing single-crossing, the cost curves for different fac-

tors intersect exactly once, generating an ordered set of task cutoffs:

𝑥𝐿 ≤ 𝑥𝐿 ≤ 𝑥𝑀 ≤ 𝑥𝑀 ≤ 𝑥𝐻,

such that tasks are assigned as follows:

𝑥 ∈ [0,𝑥𝐿) are performed by 𝐾𝐿,
𝑥 ∈ [𝑥𝐿,𝑥𝐿) are performed by 𝐿,
𝑥 ∈ [𝑥𝐿,𝑥𝑀) are performed by 𝐾𝑀 ,
𝑥 ∈ [𝑥𝑀 ,𝑥𝑀) are performed by 𝑀,
𝑥 ∈ [𝑥𝑀 ,𝑥𝐻) are performed by 𝐾𝐻,
𝑥 ∈ [𝑥𝐻,1+𝜂) are performed by 𝐻.

The structure of comparative advantages across labor and capital types implies that tasks
arenaturally segmentedalong thecomplexity spectrum. Simpler tasks (lower𝑥) areperformed
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by lower-skill capital, followed by low-skill labor, then medium-skill capital, and so forth, with
the most complex tasks ultimately assigned to high-skill labor. This sequential assignment is
characterized by a set of task boundaries, determined by points of indifference between adja-
cent factors’ costs.

At eachboundarybetweenadjacentproduction factors, the cost ofperforming themarginal
task is equalized. For any two adjacent factors 𝑗 and 𝑗′, the cutoff ̂𝑥 satisfies:

𝑝𝑗
𝐴𝑗𝜓𝑗( ̂𝑥) = 𝑝𝑗′

𝐴𝑗′𝜓𝑗′( ̂𝑥).

Specifically, the first two cutoffs are characterized by:

𝑟
𝐴𝐾𝐿

⋅𝜓𝐾𝐿
(𝑥𝐿) = 𝑤𝐿

𝐴𝐿 ⋅𝜓𝐿(𝑥𝐿), (5)

𝑤𝐿
𝐴𝐿 ⋅𝜓𝐿(𝑥𝐿) = 𝑟

𝐴𝐾𝑀
⋅𝜓𝐾𝑀

(𝑥𝐿), (6)

Given the equilibrium assignment of tasks, we can now aggregate labor demand across
the range of tasks performedby each type ofworker. Labor demand for each type reflects both
their relative productivity and the breadth of their assigned task domain. The labor demand
for workers of type 𝑙 ∈ ℒ is given by:

𝑙 = 𝑌 ⋅𝑤−𝜆
𝑙 ⋅𝐴𝜆−1

𝑙 ⋅ Γ𝑙(𝑥𝑙,𝑥𝑙), (7)

where Γ𝑙 is the share of tasks assigned to workers of type 𝑙. Task shares are defined as

Γ𝑙 ≡ ∫
𝑥𝑙

𝑥𝑙

𝜓𝑙(𝑥)𝜆−1𝑑𝑥,

with the convention that 𝑥𝐻 ≡ 1+𝜂.
Shifts in productivity directly affect task allocation. The share of tasks allocated to each

labor type is determined by the location of the boundary tasks, which reflect differences in
productivity between labor and adjacent capital types along the task space. Any increase in
theproductivity of anadjacent capital type shifts theseboundaries, reducing the rangeof tasks
assigned to labor and lowering labor demand—leading to labor displacement. Conversely, an
improvement in labor productivity pushes the boundaries outward, expanding labor’s task
domain and increasing labor demand.
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OA.8.2 Equilibrium

Equilibrium in this economy consists of a mapping from tasks to the most cost-effective pro-
duction factor, a set of consistent task prices, and factor prices that support optimal task as-
signment. Factor demands respond endogenously to the wage-rental structure and the task
allocation implied by comparative advantage.

An equilibrium in this static partial equilibrium setting is defined by an assignment of
tasks toproduction factors {𝑗(𝑥) ∈ ℒ∪𝒦}𝑥∈[0,1+𝜂], taskprices {𝑝(𝑥)}𝑥∈[0,1+𝜂], factor demands
{𝑙,𝑘}𝑙∈ℒ,𝑘∈𝒦, a positive vector of factor prices {𝑤𝑙, 𝑟}𝑙∈ℒ such that:

1. Task Assignment: Each task 𝑥 is performed by the factor that minimizes unit cost:

𝑝(𝑥) = min
𝑗∈ℒ∪𝒦

{ 𝑝𝑗
𝐴𝑗𝜓𝑗(𝑥)}, ∀𝑥 ∈ [0,1+𝜂].

2. Cutoff Conditions: At each endogenous boundary between adjacent factors, unit costs
are equalized. For example,

𝑟
𝐴𝐾𝐿

𝜓𝐾𝐿
(𝑥𝐿) = 𝑤𝐿

𝐴𝐿𝜓𝐿(𝑥𝐿),

and similarly for other cutoffs.

3. Factor Demand: Labor demand is proportional to task-weighted productivity across
the domain of tasks assigned to each labor type:

𝑙 = 𝑌 ⋅𝑤−𝜆
𝑙 ⋅𝐴𝜆−1

𝑙 ⋅ Γ𝑙(𝑥𝑙,𝑥𝑙), ∀𝑙 ∈ ℒ.

4. Output Aggregation: Aggregate output is a CES function of task-level production:

𝑌 = (∫
1+𝜂

0
𝑦(𝑥)𝜆−1

𝜆 𝑑𝑥)
𝜆

𝜆−1

.

Factor endowments are fixed andnormalized to one for each type. Equilibriumwages and
the rental rate adjust to ensure market clearing for all production factors.

This equilibrium structure provides a transparent mapping from technology and factor
prices to task assignment and output. We next examine how shifts in productivity or techno-
logical frontier expansion reshape this allocation.
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OA.8.3 Comparative Statics: Task Reallocation Following a Technology Shock

We model the introduction of digital technologies as inducing changes in the productivity
schedules of production factors (𝑑𝐴𝑗), and potentially extending the task complexity frontier
(𝑑𝜂). To isolate these effects, we abstract from endogenous factor price responses, holding
wages and the rental rate constant (𝑑𝑤𝑙 = 0 and 𝑑𝑟 = 0). Aggregate output 𝑌 responds en-
dogenously via task reallocation and productivity changes.

We characterize task reallocation by differentiating the equal-cost boundary conditions
(e.g., Equation (5)) with respect to the underlying productivities. The change in task bound-
aries for labor type 𝑙 is given by:

𝑑𝑥𝑙 = Ψ𝑙 ⋅ (𝑔𝑘 −𝑔𝑙) , (8)
𝑑𝑥𝑙 = Ψ𝑙 ⋅ (𝑔𝑙 −𝑔𝑘+1) , (9)

where 𝑔𝑗 ≡ 𝑑𝐴𝑗/𝐴𝑗 is the growth rate in productivity of factor 𝑗 ∈ 𝒦∪ℒ, and

Ψ𝑙 ≡ (𝜕 ln(𝜓𝑙/𝜓𝑘)
𝜕𝑥𝑙

)
−1

> 0, Ψ𝑙 ≡ (𝜕 ln(𝜓𝑙/𝜓𝑘+1)
𝜕𝑥𝑙

)
−1

> 0,

and 𝑘+1 denotes the next higher skill capital type.²⁵ The upper boundary shift for the highest
skill type is simply 𝑑𝑥𝐻 = 𝑑𝜂.

We now formalize the main comparative statics implications of technological change for
task assignment. First, consider the case where capital productivity improves:

Proposition 1 (Capital-Augmenting Technological Change) Supposea technology shock raises
the productivity of a skill-specific capital, 𝑔𝑘 > 0. Then, the task boundary 𝑥𝑙 (𝑥𝑙−1) shifts to the
right (left), reducing the range of tasks performed by the adjacent labor types and reallocating
more tasks toward capital.

Proof. Follows directly from differentiating the unit cost equalization condition, which im-
plies 𝑑𝑥𝑙 = Ψ𝑙 ⋅ 𝑔𝑘 > 0 and 𝑑𝑥𝑙−1 = Ψ𝑙−1 ⋅ 𝑔𝑘 < 0.

Next, consider the reverse case in which labor productivity increases:

Proposition 2 (Labor-Augmenting Technological Change) Supposea technology shock raises
the productivity of a labor type, 𝑔𝑙 > 0. Then, the task boundary 𝑥𝑙 (𝑥𝑙) shifts to the left (right),
expanding the range of tasks performed by labor and reallocating intermediate tasks from cap-
ital to labor.

²⁵The termsΨ𝑙 andΨ𝑙 capture the sensitivity of task boundaries to productivity differences between labor and
its adjacent capital competitors, as determined by the slope of their relative comparative advantage schedules.
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Proof. Follows directly from differentiating the unit cost equalization condition, which im-
plies 𝑑𝑥𝑙 = Ψ𝑙 ⋅ 𝑔𝑙 < 0 and 𝑑𝑥𝑙 = Ψ𝑙 ⋅ 𝑔𝑙 > 0.

Finally, consider how the creation of entirely new tasks reshapes production:

Proposition 3 (Task Frontier Expansion) Suppose a technology shock expands the complex-
ity frontier, 𝑑𝜂 > 0. Then, the range of tasks performed by high-skilled labor (𝐻) expands by
𝑑𝜂.

Proof. Follows immediately from model construction, since 𝑑𝑥𝐻 = 𝑑𝜂.
Thus, digital innovation reallocates existing tasks among production factors through rela-

tiveproductivity shifts,while expanding the taskdomainassigned tohigh-skilled labor through
frontier extension. These two forces jointly determine the restructuring of production follow-
ing technological change: capital-augmenting shocks tend todisplace labor, labor-augmenting
shocks reinstate labor, with frontier expansion benefiting the most skilled workers.

Figure OA.5 shows the assignment of tasks to production factors along the task space and
illustrates several types of technologies that reallocate tasks between factors. Panel A depicts
the baseline assignment of tasks based on comparative advantage, with each skill group per-
forming a contiguous segment of tasks defined by boundaries 𝑥𝐿, 𝑥𝐿, 𝑥𝑀 , 𝑥𝑀 , and 𝑥𝐻 .

Simple-Task Automation. Panel B illustrates the impact of a technology that automates
simple tasks performed by labor. This technology raises the productivity of labor less than
that of the corresponding capital associated with it (i.e., 𝑔𝑘 > 𝑔𝑙), but of the same magnitude
as the higher-skilled capital (i.e., 𝑔𝑙 = 𝑔𝑘+1). As capital becomes relatively more productive in
simple tasks, it takes over these tasks previously performed by labor. All lower task boundaries
𝑥𝐿, 𝑥𝑀 , and 𝑥𝐻 shift rightward, shrinking the task spans assigned to all types of workers.

Complex-Task Automation. Panel C shows an automation technology that, instead, auto-
mates complex tasks performed by labor. This technology raises the productivity of labor as
much as that of the corresponding capital (i.e., 𝑔𝑙 = 𝑔𝑘), but less than the productivity of the
higher-skilled capital (i.e., 𝑔𝑙 < 𝑔𝑘+1). As capital becomes relatively more productive in com-
plex tasks, it takes over these tasks previously performed by labor. The upper task boundaries
𝑥𝐿 and𝑥𝑀 shift leftward, shrinking the task spans assigned to low- andmiddle-skilledworkers.
Note that the set of tasks allocated to high-skilled workers does not change since we assume
there is no higher-skilled capital.

Simple-Task Reinstatement. Panel D shows a technology that reinstates simple tasks to la-
bor. This technology raises the productivity of labor more than that of the corresponding cap-
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Figure OA.5: Task Space and the Reassignment of Tasks with Automation and Reinstatement

[Panel A] Task Space

[B] Simple-Task Automation (𝑔𝑘 > 𝑔𝑙 = 𝑔𝑘+1)

[C] Complex-Task Automation (𝑔𝑘 = 𝑔𝑙 < 𝑔𝑘+1)

[D] Simpler-Task Reinstatement (𝑔𝑘 < 𝑔𝑙 = 𝑔𝑘+1)

[E] Complex-Task Reinstatement (𝑔𝑘 = 𝑔𝑙 > 𝑔𝑘+1, 𝑑𝜂 > 0)

𝑑𝑥𝐿 𝑑𝑥𝑀 𝑑𝑥𝐻

𝑑𝑥𝐿 𝑑𝑥𝑀

𝑑𝑥𝐿 𝑑𝑥𝑀 𝑑𝑥𝐻

𝑑𝑥𝐿 𝑑𝑥𝑀 𝑑𝜂

0 𝑥𝐿 𝑥𝐿 𝑥𝑀 𝑥𝑀 𝑥𝐻 1

𝐾𝐿 𝐿 𝐾𝑀 𝑀 𝐾𝐻 𝐻

𝑑𝐿 < 0 𝑑𝑀 < 0 𝑑𝐻 < 0

𝑑𝐿 < 0 𝑑𝑀 < 0 𝑑𝐻 = 0

𝑑𝐿 > 0 𝑑𝑀 > 0 𝑑𝐻 > 0

𝑑𝐿 > 0 𝑑𝑀 > 0 𝑑𝐻 > 0
Notes: This figure displays the assignment of tasks to production factors along the task space in Panel A, the effect
of the introduction of a technology that automates simple tasks in Panel B, automates complex tasks in Panel C,
that reinstates simple tasks in Panel D, and that reinstates complex tasks in Panel E.

ital associated with it (i.e., 𝑔𝑘 < 𝑔𝑙), but of the same magnitude as the higher-skilled capital
(i.e., 𝑔𝑙 = 𝑔𝑘+1). As labor becomes relatively more productive in simpler tasks, it takes over
these tasks previously performed by capital. All lower task boundaries 𝑥𝐿, 𝑥𝑀 , and 𝑥𝐻 shift
leftward, expanding the task spans assigned to all types of workers.

Complex-Task Reinstatement. Panel E shows a technology that reinstates complex tasks
to labor. This technology raises the productivity of labor as much as that of the correspond-
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ing capital (i.e., 𝑔𝑙 = 𝑔𝑘), but more than the productivity of the higher-skilled capital (i.e.,
𝑔𝑙 > 𝑔𝑘+1). In addition, it creates new tasks for high-skilled labor (i.e., 𝑑𝜂 > 0). As labor be-
comes relatively more productive in more complex tasks, it takes over these tasks previously
performed by capital. All upper task boundaries 𝑥𝐿, 𝑥𝑀 , and 𝑥𝐻 shift rightward, expanding
the task spans assigned to all types of workers.

To summarize, the introduction of a new digital technology can either automate tasks or
reinstate tasks; the tasks that are affected can either be simple or complex ones. Eventually,
technologies can have a combination of several effects, such as simple-task automation with
complex-task reinstatement. These changes in task allocation are reflected in the demand for
labor types.

OA.8.4 Labor Demand Changes Following a Technology Shock

Wenow analyze how technological shocks affect labor demand by differentiating the labor de-
mand for each worker type. This decomposition separates the overall change in employment
into distinct economic channels: output expansion, task-specific price adjustments, task re-
allocation, and task creation.

Differentiating the labor demand from Equation (7), we obtain

𝑑𝐿
𝐿 = 𝑑𝑌

𝑌 −(1−𝜆) ⋅ 𝑔𝐿 − 𝜓𝐿(𝑥𝐿)𝜆−1

Γ𝐿
⋅ 𝑑𝑥𝐿 + 𝜓𝐿(𝑥𝐿)𝜆−1

Γ𝐿
⋅ 𝑑𝑥𝐿,

𝑑𝑀
𝑀 = 𝑑𝑌

𝑌 −(1−𝜆) ⋅ 𝑔𝑀 − 𝜓𝑀(𝑥𝑀)𝜆−1

Γ𝑀
⋅ 𝑑𝑥𝑀 + 𝜓𝑀(𝑥𝑀)𝜆−1

Γ𝑀
⋅ 𝑑𝑥𝑀 ,

𝑑𝐻
𝐻 = 𝑑𝑌

𝑌 −(1−𝜆) ⋅ 𝑔𝐻 − 𝜓𝐻(𝑥𝐻)𝜆−1

Γ𝐻
⋅ 𝑑𝑥𝐻 + 𝜓𝐻(1+𝜂)𝜆−1

Γ𝐻
⋅ 𝑑𝜂,

where the aggregate output 𝑌 responds endogenously to technology shocks through the real-
location and expansion of tasks, as captured in the term 𝑑𝑌 /𝑌 .

Substituting for 𝑑𝑥𝑙 and 𝑑𝑥𝑙 using Equations (8) and (9) and rearranging, the change in
labor demand for low-skilled workers becomes:

𝑑𝐿
𝐿 = 𝑑𝑌

𝑌⏟
Aggregate

productivity
effect

−(1−𝜆) ⋅ 𝑔𝐿⏟⏟⏟⏟⏟
Task price

effect

+ 𝜙𝐿 ⋅ (𝑔𝐿 −𝑔𝐾𝐿
)⏟⏟⏟⏟⏟⏟⏟

Simple Task
Reinstatement/Automation

effect

+ 𝜙𝐿 ⋅ (𝑔𝐿 −𝑔𝐾𝑀
)⏟⏟⏟⏟⏟⏟⏟

Complex Task
Reinstatement/Automation

effect

, (10)

where 𝜙𝐿 ≡ Ψ𝐿 ⋅𝜓𝐿(𝑥𝐿)𝜆−1/Γ𝐿 and 𝜙𝐿 ≡ Ψ𝐿 ⋅𝜓𝐿(𝑥𝐿)𝜆−1/Γ𝐿 > 0.
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Similarly, for middle-skilled workers:

𝑑𝑀
𝑀 = 𝑑𝑌

𝑌⏟
Aggregate

productivity
effect

−(1−𝜆) ⋅ 𝑔𝑀⏟⏟⏟⏟⏟
Task price

effect

+ 𝜙𝑀 ⋅ (𝑔𝑀 −𝑔𝐾𝑀
)⏟⏟⏟⏟⏟⏟⏟

Simple Task
Reinstatement/Automation

effect

+ 𝜙𝑀 ⋅ (𝑔𝑀 −𝑔𝐾𝐻
)⏟⏟⏟⏟⏟⏟⏟

Complex Task
Reinstatement/Automation

effect

, (11)

where 𝜙𝑀 ≡ Ψ𝑀 ⋅𝜓𝑀(𝑥𝑀)𝜆−1/Γ𝑀 and 𝜙𝑀 ≡ Ψ𝑀 ⋅𝜓𝑀(𝑥𝑀)𝜆−1/Γ𝑀 > 0.
Finally, for high-skilled workers:

𝑑𝐻
𝐻 = 𝑑𝑌

𝑌⏟
Aggregate

productivity
effect

−(1−𝜆) ⋅ 𝑔𝐻⏟⏟⏟⏟⏟
Task price

effect

+ 𝜙𝐻 ⋅ (𝑔𝐻 −𝑔𝐾𝐻
)⏟⏟⏟⏟⏟⏟⏟

Simple Task
Reinstatement/Automation

effect

+ 𝜙𝜂 ⋅ 𝑑𝜂⏟
Complex Task
Reinstatement

effect

, (12)

where 𝜙𝐻 ≡ Ψ𝐻 ⋅𝜓𝐻(𝑥𝐻)𝜆−1 /Γ𝐻 > 0, and 𝜙𝜂 ≡ 𝜓𝐻(1+𝜂)𝜆−1 /Γ𝐻 > 0.
Emerging digital technologies affect labor demand through four main channels:

• AggregateProductivityEffect (+): An increase in overall output that raises the demand
for all inputs proportionally.

• Task Price Effect (−): A decline in the unit cost of performing tasks, proportional to the
productivity growth of labor types, modulated by the elasticity of substitution between
tasks.

• Reinstatement/Automation Effect (+/−): A reallocation of tasks between capital and
labor based on relative productivity changes, leading to either an expansion or contrac-
tion of the task domain assigned to each labor group.

• Frontier Expansion Effect (+): The creation of new tasks that benefit workers capable
of performing the highest complexity tasks, namely, high-skilled workers.

The introduction of a digital technology can be considered as the combination of produc-
tivity shocks on production factors, 𝑑𝐴𝑗, which grow factor productivity by a rate of 𝑔𝑗, and
the creation of new tasks for high-skilled workers, 𝑑𝜂. These latter may also raise output 𝑑𝑌 .
Depending on the technology, this theoretical framework helps in understanding the impact
of digital technologies on employment.
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