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Abstract

This paper analyzes how the impacts of ICT, Software & Databases, and Robots on Euro-
pean regional labor markets (1995–2017) vary across technology life cycle phases. Mo-
tivated by theories predicting shifting skill biases between early adoption and maturity,
we first identify major technological breakthroughs and delineate their life cycle phases
(early vs. maturity) based on investment growth patterns. Using a shift-share instrumen-
tal variable approach, we estimate phase-specific impacts of regional technology expo-
sure on employment and wages. While confirming that effects differ significantly across
phases, we find only partial support for standard skill-bias predictions during early adop-
tion. Our results highlight the importance of analyzing dynamics within specific technol-
ogy life cycles to understand the heterogeneous short-term labor market adjustments of-
ten obscured in aggregated long-run analyses.
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1 Introduction
The codification of tasks and the skills required to work with new digital and automation tech-
nologies changewith each technological breakthrough (Kogan et al. 2023, Prytkova et al. 2024)
and over their technology life cycle (Langlois 2003, Vona andConsoli 2015, Ciarli et al. 2021). A
technology life cycle encompasses the stages a technologygoes through from its initial concep-
tion to its eventual decline. These stages typically include research and development, market
introduction (early phase), growth,maturity anddecline, each characterized by different rates
of innovation, adoption, and ultimately, investment (Tushman and Anderson 1986). Focusing
on the core shift in adoption dynamics, we distinguish two main phases of a technology life
cycle: an initial phase of rapid development (early phase), followed by a period of incremental
changeandmaturation (maturityphase). Theadoptionpatternwithin eachphasemirrors this
cycle following a well-documented logistic pattern (Geroski 2000): first, adoption of radically
new technology breakthroughs grows exponentially (early phase), lead by early and major-
ity adopters (Rogers 1962); in the second phase, after the diffusion of the technology reaches
and surpasses the midpoint of potential adopters, adoption of more mature technology vin-
tages grows at a diminishing rate (maturity phase). The transition between these two phases
is marked by a shift in investment growth patterns in the technology.¹

Theory suggests that during the early phase of the life cycles, new technologies are biased
towards skilled workers because early adoption requires higher levels of education and exper-
tise (Tushman and Anderson 1986, Bartel and Lichtenberg 1987, Aghion 2002, and Sanders
2013). During the maturity phase, learning has occurred, technology vintages become more
standardized and firms are better able to integrate them, potentially increasing employment
and productivity even for lower-skilled workers(Vona and Consoli 2015). For instance, Bartel
and Lichtenberg (1987) hypothesizes that education is a necessary condition to adopt a new
technology, and once a technology is adopted, firms demand more educated workers. The
implication is that early adoption, implementation, and adjustment of the new technology re-
quires highly educated workers. Less educated workers, however, may be in higher demand
as the technology matures and becomes more accessible (i.e. in the second phase of the tech-
nology life cycle). Aghion (2002) further explains changes inwage inequalitywithin education
groupswith the diffusion of technologies embodied in newmachines, arguing that only a frac-

¹Consider the case of the Internet andWeb-based technologies. TheWorldWideWeb (WWW)began its adop-
tion in high-income countries in the early 1990s, initially limited to academic and research institutions. Early
adopters, predominantly skilled professionals, leveraged it for communication and data-sharing. By the late
1990s and early 2000s, widespread adoption among businesses and households enabled e-commerce, cloud-
based applications, and digital communication tools. As the technology matured, businesses fully integrated
digital tools, and widespread saturation was reached. By the early 2000s, new breakthroughs such as GUI and
cloud computing began to emerge, signaling the next life cycle.
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tion of workers are in a position to adapt and use the new technology vintages.
In this paper, we empirically test these theoretical predictions. Weestimate the short-term

impacts of the technology life cycles of digital (Information andCommunicationTechnologies
(ICT), Software and Database (SDB)) and automation technologies (Robots) between 1995–
2017 on European regional labor markets. Specifically, we examine the impacts of each life
cycle phase (early and maturity) on employment and wages, exploring whether the effects
differ across technological breakthroughs within each technology category.

We start by identifying technology life cycles from 1995 to 2017, based on major techno-
logical developments and investment growth in digital (ICT and SDB) and automation (robot)
technologies in the EU. We identify major technological breakthroughs using the technical lit-
erature, and determine their life cycle phases based on technology investment growth rates.
Since direct firm adoption data is unavailable, we use growth rates of aggregate investment as
a proxy to identify periods of rapid adoption expansion (early phase) versus slower, incremen-
tal adoption growth (maturity phase) within each technology’s life cycle. We identify three
technology life cycles reflecting the main digital eras since the 1990s: World Wide Web 1.0
(1990–2004), Graphical User Interface and Cloud Computing (2004–2013), and Big Data and
Artificial Intelligence (2013–). Additionally, we identify two technology life cycles reflecting
the radical change in robot technologies with the introduction of AI: Robotics (1995–2013)
and Intelligent Robots (2013–).

We assess the impact of these digital and automation technologies on European regional
labor market outcomes for each technological breakthrough and during their technology life
cycle phases. Specifically, we estimate the influence of regional exposure to these technolo-
gies on the employment-to-population ratio and averagewage. Employment impacts provide
evidence on whether higher technological penetration displaces, reinstates, or has no effect
on regional employment. Combined with wage impacts, we infer the types of employment
that are displaced or created (high- or low-paid), or whether there is a substitution between
high- and low-paid workers.²

To determine the effects of regional exposure to each technology, we use a shift-share in-
strumental variable (IV) approach, drawing on prior research (Chiacchio et al. 2018, Aghion
et al. 2019, Acemoglu and Restrepo 2020, Dauth et al. 2021, Jestl 2024). We adapt the approach
to account for technology life cycles. We instrument EU regional exposure with investment in
these technologies during the same cycle phase in the US, addressing potential endogeneity

²It is worth noting that using data on the type of occupations as an outcome variable would have been prefer-
able. However, our analysis is constrained by the lack of consistent occupational data at the regional level for
the period under study and across the entire Europe. We develop an interpretative framework in Section 5 to sys-
tematically infer skill-bias from the combined effects on the employment-to-population ratio and the average
wage.
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concerns.
To maximize data availability, we study these impacts on regional employment rates and

the average wage for a sample of 158 NUTS-2 regions in 12 European countries from 1995
to 2017. Due to the lack of firm adoption data across EU regions, we proxy the adoption life
cycle at the regional level using aggregate investment information for the three technology
groups. Our empirical analysis integrates data from multiple sources: EU-KLEMS (Release
2021) for ICT and SDB investments, International Federation of Robotics (IFR) data for robot
investments, and ARDECO (Release 2021) for labor market outcomes.

Our results support the theory that labor market impacts of digital and automation tech-
nologies differ between the early and maturity adoption phases. However, based on wage im-
pacts, we find limited support for the theory that during the first phase, when the technology
is first deployed, the early adopters are expected to be more educated and skilled. We observe
this pattern for investment in intangible digital technologies such as software and databases,
but not for tangible technologies such as ICT and robots. For robots, we observe an increase
in the employment-to-population ratio during the early phase, with no skill bias. For ICT, we
observe the reinstatement of low-skilled jobs in the early phase, and a displacement of low-
skilled workers consistently during the second phase of technology maturity.

Second, in addition to earlier findings that robots and ICT have different impacts on the
labor markets, we also find that these impacts differ among different breakthroughs of these
digital and automation technologies. Most of the impacts of digital technologies observed
between 1995 and 2017 are largely attributable to the first technology breakthrough observed
in our data, the popularization of user-friendly computers through Web 1.0 (1995-2004).

Third, during this first technology life cycle, ICT and SDBhave opposite effects on regional
labor markets, with the former reinstating and the latter displacing low-skilled workers. This
result is driven by the early phase of the cycle, in which earlier vintages of the technology are
adopted by early and majority adopters. In the regions in which the adoption of ICT and SBD
complement each other (regions with similar penetration rate for both ICT and SDB), the two
effects cancel out and the overall effect on the labor market is nearly zero. In regions in which
ICT adoption dominates, early adopters of Web 1.0 technologies experience an increase in
productivity and sales which increases labor demand. In regions inwhich SDB adoption dom-
inates, low-skilled workers are replaced by fewer high-skilled workers (as predicted by extant
theories).

Fourth, while industrial robots are adopted mainly in manufacturing, their (positive) ef-
fect on employment within the same region occurs only in services within the same region.
We find no impact on the industry employment rate. ICT and SDB, adopted in both indus-
try and services, also exert their main (positive and negative) impact on services. Overall, the
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main changes in employment and wages seem to be driven by changes in the local demand
for services.

This paper contributes to the extensive literature on the impact of digital and automation
technologies on labor markets (Goos et al. 2014, Chiacchio et al. 2018, Graetz and Michaels
2018, Aghion et al. 2019, Acemoglu and Restrepo 2020, Gregory et al. 2022). These studies fo-
cus predominantly on the long-term consequences of technology at various levels of analysis.
US estimates indicate a negative impact of robots on employment (Acemoglu and Restrepo
2020), while findings for Europe are more mixed. For instance, Acemoglu et al. (2020) report
negative employment impacts from robot investment, Dauth et al. (2021) find no significant
effects, and Reljic et al. (2023) observe a positive impact. Additionally, studies differentiat-
ing among robots, ICT, and SDB report varying effects based on the specific technology and
industry involved (Blanas 2023, Jestl 2024). Furthermore, research focusing on different pe-
riods reveals varying impacts, depending on whether substitution or compensation effects
dominate. For example, Antón et al. (2022) note that the slight negative effect of robots on
employment from 1995 to 2005 shifts to a positive effect from 2005 to 2015.

In particular, we contribute to the relatively thin literature on the role of technology life
cycles in influencing the impact of technologies on labor demand (Hirsch 1965, Tushman
and Anderson 1986, Audretsch 1987, Xiang 2005, Bartel and Lichtenberg 1987, Aghion 2002,
Sanders 2013, Vona and Consoli 2015). For instance, Hirsch 1965 shows that in the electronics
industry, science and engineering skills are more relevant in the early stages of technology de-
velopment, and become progressively less relevant. While the opposite is true for unskilled la-
bor. Management sits in themiddle, beingmost relevant in the growth phase. Audretsch 1987
shows that during the first phase of the life cycle, industries are more skill-intensive. Whereas
in the second phase, they rely less on skills and more on capital. Xiang 2005 finds that the
production of new goods employs a higher share of skilled workers, making the case that tech-
nology is skill-biased.

Our work makes two main contributions to this literature. First, we focus on the adop-
tion side of the technology life cycle, rather than on the product life cycle. This distinction is
important because while it is high skilled workers who develop new technologies, from the
literature we know that adoption may have varying distributional effects, for instance in favor
of high skilled workers (Autor et al. 1998, Autor et al. 2003) or workers performing tasks that
are less likely to be codified (Acemoglu and Autor 2011, Acemoglu and Restrepo 2019). This
allows for testing specifically the prediction that during the early phase of the life cycles, the
technology is biased towards skilled workers (Tushman and Anderson 1986, Bartel and Licht-
enberg 1987, Aghion 2002, and Vona and Consoli 2015). That is likely to happen in a scenario
in which early adopters of breakthrough technologies, typically the most productive and ad-
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vanced firms, are also more likely to replace unskilled or routine workers (Autor et al. 2020).
However, these early highly productive adopters may also be the ones who benefit most from
the technological breakthrough, become more productive, and can reduce production costs
and increase final demand (Vivarelli 1995). We can also think of a second scenario in which
early adopters hoardworkerswhile they integrate the new technology (Domini et al. 2021).³ In
the second stage of the life cycle, instead, the technology becomes mature and standardized,
firms integrate it efficiently, and task routinization is codified, leading toworker replacement.⁴
We find that ICT follows the second scenario, SDB the first, while the impact of robots on labor
markets in the first phase is not skill biased.

Second, we contribute to explaining the difference between long- and short-run effects of
digital and automation technologies on labormarkets. In the long run, digital and automation
technologies trigger productivity gains (Aghion et al. 2022), demand growth (Vivarelli 1995),
and the emergence of new tasks and occupations (Autor et al. 2024), offsetting the displace-
ment of workers responsible for the automated tasks (Simon 1960). As a result, total employ-
ment does not change, although its composition does (Autor and Salomons 2018). Previous
research often differentiates the effects of automation technologies based on arbitrary time
periods that encompass several technological breakthroughs. Instead, we explore the short-
term dynamics defined by the specific life cycle of each of the three groups of automation
technologies: robots, ICT, and SDB. This approach provides a more nuanced understanding
of how labor markets adjust to technological advancements within distinct phases of technol-
ogy development. We find that small or non-significant effects in the long run, across differ-
ent technology life cycles, hide larger short-term effects on employment and its composition,
which are likely experienced by workers.

The paper is structured as follows. Section 2 describes the variables and the databases
used for our analysis. Section 3 identifies the primary innovation breakthroughs for robots,
ICT, andSDBanddefines their respective life cycles. Section4describes the empiricalmethod-
ology and our tailored IV strategy. Section 5 presents the results for the effects of automation
technologies during digital technology life cycles, and discusses them in relation to the extant
theory. Section 6 provides concluding remarks.

³This is, for example, because the routinization of tasks is incomplete and requires adjustments, necessitating
technicians (Lewis 2020). Retraining existing workers is costly and time-consuming (David 1985), leading firms
to reconfigure their production organization (Langlois 2003, Ciarli et al. 2021, Battisti et al. 2023).

⁴For example, VonaandConsoli (2015)note that the substitutability betweenworkers andmachines increases
with technological developments as task standardization improves.
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2 Data

2.1 Sample

We analyze the impact of technology exposure on labor market outcomes across 158 NUTS-2
regions from 12 European countries over the period 1995 to 2017. The 12 countries included
are Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Netherlands,
Spain, and Sweden.⁵

2.2 Data Sources and Variables

Labor market. We examine labor market outcomes at the regional level, focusing on vari-
ables related toemploymentandwages, constructedusingNUTS-2 level data fromtheARDECO
database (2022 release).⁶

We use the employment-to-population ratio as our main employment outcome, defined
as the share of employed individuals aged 15 to 64 relative to the total population in the same
age group.⁷

For wages, we use the average annual wage compensation per worker, expressed in thou-
sands of euros (2015 values), computed by dividing total employee compensation by the level
of total employment.

Exposure to automation technologies. We consider four automation technologies:

1. Robot: “programmed actuated mechanism with a degree of autonomy to perform loco-
motion, manipulation or positioning” (ISO 8373:2021);

2. Communication Technology (CT): “specific tools, systems, computer programs, etc.,
used to transfer information among project stakeholders” (ISO 24765:2017);

⁵WeexcludeEasternEuropeancountries for twomethodological reasons: first, data on initial sectoral employ-
ment shares in 1980 required by our shift-share design to measure the technology exposure of European regions
are not available for some of these countries, and second, identification of automation technology investment
cycles requires a balanced panel of technology stocks for the period 1995-–2017. Our objective is to assess the
impact of exposure to automation technologies across the entire set of countries and anunbalancedpanelwould
bias the identification of these cycles towards the subset of countries with data available up to 1995.

⁶ARDECO stands for ‘Annual Regional Database of the European Commission’ and is elaborated and main-
tained by the Directorate General for Regional and Urban Policy in the Joint Research Center. It provides data on
population, employment (persons and hours worked), wages, labor costs, gross domestic product, and capital
formation since 1980 at NUTS-3, NUTS-2, NUTS-1, and country level. The employment variables are disaggre-
gated at broad sectoral levels. Table A.1 summarizes the industry classification.

⁷We acknowledge that the ratio suffers from the limitation that the denominator may grow more than the
numerator in regions with an aging population. However, in the ARDECO database, we only have information
for the total population, so it is not possible to exclude people with 65 or older. If regions that are aging faster
also have an incentive to adopt digital technologies, we expect to see a negative relation between technology
adoption and the employment-to-population ratio. We will take this into account when interpreting the results.
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3. Information Technology (IT): “resources required to acquire, process, store and dissem-
inate information” (ISO 24765:2017);

4a. Computer Software: “computer programs, procedures and possibly associated docu-
mentation anddata pertaining to the operationof a computer system” (ISO24765:2017);

4b. Database: “collection of interrelated data stored together in one or more computerized
files” (ISO 24765:2017).

We consider computer software (4a) and databases (4b) as a single category, labeled software
and databases (SDB). This decision is motivated by two main considerations. First, the EU-
KLEMSdatawe use (discussed further below) do not clearly distinguish between software and
databases.⁸ Second, these two technologies are highly complementary, making it analytically
meaningful to group them. Based on the same rationale, we combine IT and CT into informa-
tion and communication technology (ICT).

To compute a measure of regional exposure to robots, we use the number of robots (i.e.
robot stock) in use in each sector at the country level from the 2019 Release of the IFR data
(see Jurkat et al. (2022) for a comprehensive review of the data). Robots are present in three
out of six sectors: Industry (B-E), Construction (F), and Non-Market Services (O-U).⁹ Since
approximately 30% of robots in IFR are not assigned to a sector, we proportionally reallocated
them to sectors based on observed sectoral robot shares.¹⁰ Additionally, for countries where
the number of robots is not available at the sectoral level for early years (such as the US), we
estimate their number by distributing the total number of robots weighted by the average sec-
toral share using years with available data.¹¹

To compute a measure of regional exposure to other digital technologies, we use ICT and
SDB data from the EU-KLEMS database (Release 2021). We use data on the capital stock (in

⁸This comes from the fact that it retrieves data from the national statistical offices which follow the Systema
of National Accounts (SNA) 2008 in which software and databases are treated as a single category.

⁹It is worth noting that IFR Release 2019 has information at ISIC Rev. 3.1. As the rest of our data sources
are at ISIC Rev. 4 (which corresponds to NACE Rev. 2), we harmonized them to be compatible with the latter
classification. Given that we only have access to 1-digit industry-level data in the ARDECO database, the conver-
sion between Rev 2 and Rev 3.1 introduces marginal differences. Tables A.1 and A.2 provide more details on the
harmonization.

¹⁰Specifically, we calculated the ratio of the number of robots in each sector to the total number of robots
assigned to sectors and allocated the unspecified robots based on these ratios. While some studies do not dis-
tribute unallocated robots across sectors (see Graetz and Michaels 2018, Dauth et al. 2021), in our case, doing so
ensures a harmonized series that is comparable when aggregating our measure of technology exposure across
sectors.

¹¹For instance, suppose that for a specific country, sectoral robot stock data are missing between 1995–2000.
We then calculated average sectoral shares from 2001 to 2017 and imputed numbers for the earlier years by ap-
plying these estimated shares to the total robot count.
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2015 volumes), derived from national accounts.¹²,¹³ For Denmark and Sweden, we converted
EU-KLEMS figures into euros using the nominal exchange rate from EUROSTAT.

Control variables. To account for other factors that might influence regional labor market
outcomes, we include two control variables (both in shift-share) to isolate the role of invest-
ment in automation. First, we adjust for changes in final domestic demand using the real
consumption index from the Inter-Country Input-Output database.¹⁴ We do this to absorb
the effect associated with business cycles in our outcome variables. Second, we consider the
potential impact of trade and international competition by controlling for imports fromChina
recorded in the OECD Trade in Value Added database.¹⁵ This control captures the adverse ef-
fects of international competition on local labor markets (Autor et al. 2013, Dauth et al. 2014,
Autor et al. 2015).

Instrumental variable. To address the endogeneity in the relationship between the deci-
sion to invest in automation technologies and labor market outcomes, we use data on invest-
ment in theUnited States in similar automation technologies as an instrument for investment
by European regions. These data are from the IFR (for robots) and EU-KLEMS (for ICT and
SDB).To construct our instrument (described in Section 4), wenormalize the technology stock
using sectoral employment data from1980, sourced from theOECDAnnual Labor Force Statis-
tics (ALFS).¹⁶

3 Technological Breakthroughs and their Life Cycles
Innovations tend to cluster temporally around major breakthroughs, promoting a series of in-
cremental innovations that lead to the next major breakthrough once the technology reaches
the maturity stage (Silverberg and Verspagen 2003).

In this section, we qualitatively identify the primary innovation breakthroughs in robots
and digital technologies (ICT and SDB) since 1990 by combining insights from the innovation
and engineering literature. We then analyze the diffusion patterns of these breakthroughs

¹²Investment would have been a better measure, due to the small differences in accounting for depreciation
across national statistical offices. However, due to the different compliance rules across countries, robot flows
(robot installations per year) are tracked differently Jurkat et al. (2022), which does not allow for building an
investment measure for robots. We therefore use stock for all technologies

¹³For Ireland, where sectoral stock data are unavailable for ICT/SDB, we allocate country-level technology
stocks across sectors based on each sector’s share in gross fixed capital formation.

¹⁴OECD (2021), OECD Inter-Country Input-Output Database, http://oe.cd/icio. Release: November 2019.
¹⁵OECD (2021), OECD Trade in Value Added Database, http://oe.cd/tiva. Release: November 2021.
¹⁶OECD (2022), OECD ALFS, https://stats.oecd.org/.
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Figure 1: Main Digital Technology Innovations Since 1990

Notes: Figure 1 presents the main digital technology innovations since 1990. The 3 digital technological cycles
are Web 1.0 (1993 to 2004), Graphical User Interface and Web 2.0 (2004 to 2013), and Big Data and Artificial
Intelligence (from 2013).

across Europe over time, examining investment trends in these three technologies. Specifi-
cally, we we distinguish between phases of accelerated (early phase) and decelerated (matu-
rity phase) investment following each breakthrough. Following the well-known logistic diffu-
sion curve (Geroski 2000), we interpret investment accelerations as indicative of early adop-
tion of the new technology, and investment decelerations as signaling later adoption of the
technology in a more mature stage.

3.1 Breakthroughs inDigital Technologies: From theWeb1.0 toBigData
and AI

The ICT revolution, which began in the early 1970s, has been described as “a set of interre-
lated radical breakthroughs, forming a major constellation of interdependent technologies”
(Freeman and Perez 1988, Perez 2010). Nuvolari (2020) identifies four major interdependent
technological ICT elements: electronic components, computational power (semiconductors
and computers), software, and networking equipment. Radical advancements in these com-
ponents can lead to significant innovations in ICT. In particular, the development ofmicropro-
cessors was central to the ICT revolution, enhancing the computational capacity of electronic
devices such as computers while also reducing their cost (Freeman and Louçã 2001).

Figure 1 presents the main digital technology innovations since the 1990s and highlights
three major radical shifts in various ICT components (breakthroughs): Web 1.0 (1993–2004),
Graphical User Interfaces and Cloud Computing (2004–2013), and Big Data and Artificial In-
telligence (AI) (2013–present). We highlight the main features of these three breakthroughs
here and provide a more detailed description of the technologies and their components in
Appendix F.

9



Web 1.0. During the 1990s, the reduced size and cost of microprocessors significantly in-
creased the adoption of personal computers. The introduction of user-friendly operating sys-
tems such asWindows 3.0 and Linux led to thewidespread adoption of computers (IT). Along-
side these technical changes, the emergenceof theWorldWideWeb (WWW) in1993 facilitated
the adoption of the Internet (CT) by businesses (e.g., e-commerce) and end-users. Software
advances (e.g. Windows 3.0) enabled wider ICT diffusion to end-users, though database in-
vestments remained relatively low during this phase.

Graphical User Interface and Cloud Computing. The second technological breakthrough
was marked by the emergence of Web 2.0 technologies in the early 2000s, following signifi-
cant advancements in Graphical User Interface (GUI) and Cloud Computing. Earlier infras-
tructure developments (e.g., the Internet and mobile communication) enabled the prolifer-
ation of user-friendly devices like smartphones. This era gave birth to significant network
economies (Mansell 2021) and the proliferation of new service applications (e.g., social me-
dia, electronic commerce, search engines, data analytics). During this period, databases also
became increasingly central to both final and intermediate demand, as computational power
grew and Application Programming Interfaces (APIs) were developed.

Big Data and Artificial Intelligence. The third technological breakthrough is characterized
by the latestwave of AI, drivenby increased investments in neural networks anddeep learning.
Thisperiod ismarkedby advancements inmachine learning anddeep learning algorithms, en-
abled by the growing availability of large data sets (big data) and rapid increases in computa-
tional power (facilitated by cloud computing). Improved networking and sensor technologies
also supported the rise and the diffusion of the Internet of Things (IoT).¹⁷

3.2 Breakthroughs in Robots: From Robotics to Intelligent Robots

Robotics. Thedevelopment of robotics in the 1990swas built on threemain technologies in-
tegral to the third generation of robots (1978–1999) identified by Gasparetto et al. 2019. These
technologies include remote and self-programming capabilities enabled by microprocessors,
sensors, and rudimentary ‘intelligence’ for diverse condition responses and environmental
interactions (e.g., visual or tactile inspection and servo controls), and the capability for six-
axismovements (see discussion in Savona et al. 2022). Advances in communication protocols

¹⁷The IoT can be defined as a suite of technologies that allow physical objects (equipped with sensors) to com-
municate and exchange data with computing systems via wired or wireless networks without human interven-
tion (Lee 2017). Alongside social media platforms, the IoT is promoting data generation and further AI develop-
ments.
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during the 1990s—such as the Internet, the WWW, and wireless standards—further expanded
robots’ control capabilities and mobility, enabling the development of mobile robots (Grau
et al. 2017). This expansion impacted the automobile industry and, crucially, began to diffuse
to other manufacturing industries (Hägele et al. 2016, Gasparetto et al. 2019).

While robots improved over the years, there was no radical change in the technology until
2010, but rather a continuation of the technological patterns observed in the early 1990s. The
build up and advancement of Industry 4.0 technologies in the first decade of the 2000smarked
the advent of a new era in robotics.

Intelligent Robots. The development of AI technologies in the middle of the 2010s, com-
bined with the emergence of the IoT and sophisticated sensors, paved the way for intelligent
computing systems. More sophisticated sensors and wireless communication technologies
allow for full mobility on manufacturing floors and self-coordination involving swarms of de-
vices (IoT). These radical developments have increased the autonomy of robots, their ability
to collaborate with humans, and their precision in various industrial applications, leading to
the emergence of ‘intelligent robots’ (Müller 2022).

3.3 Technology Life Cycles in Automation Technologies

If the breakthroughs identified qualitatively represent major technological developments of
ICT/SDB and robots, we should observe an increase in the adoption of these technologies
until the rate of adoption has reached its midpoint, followed by a decrease thereafter (Geroski
2000). To check for this, we examine investment in robots and digital technologies since 1990
in Europe. Specifically, we assess whether investment accelerates following a breakthrough
(indicating early adoption) and decelerates as the technology matures, potentially leading to
the next breakthrough.

Weaggregate investment stock in these technologies (per thousandworkers in 1980at con-
stant prices) across all European countries.¹⁸ As expected, investment in digital technologies
and robots has increased annually since 1990 (see Figure D.1 in the appendix).

To assess the rate of increase, in Figure 2, we calculate the first difference in the time series
after applying a 3-year moving average to smooth short-term fluctuations.

¹⁸The technology stocks from EU-KLEMS are calculated in volume terms and are not directly additive. There-
fore, we used the EU-KLEMS methodology to generate aggregates (Bontadini et al. 2021). This is, we calculated
aggregation at the European level at both the current and previous year’s prices and derived a European-level
volume index, which we used to chain-link the values using 2015 as the base year. We then normalized the series
by employment aggregated at the European level in 1980.
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Figure 2: Investment in Digital Technologies and Robot in Europe (First Difference)

(a) Digital Technologies

(b) Robots

Notes: Panel 2a depicts the evolution of the first difference in digital technologies (left y-axis) and real consump-
tion (right y-axis) per thousand workers at the EU level, aggregated for the 12 European countries in the sample.
Both series are smoothed by taking the 3-year moving average. Digital technologies comprise ICT and software
and databases. The data on consumption correspond to the final consumption expenditure of households from
the OECD Input-Output Tables (2021 edition). This series has been adjusted into real consumption figures by
deflating it with the consumer price index provided by the OECD (base year 2015=100). Panel 2b depicts the
evolution of the first difference robot stock per thousandworkers at the EU level (aggregated for the 12 European
countries in the sample). The series is smoothed by taking the 3-year moving average.
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The left y-axis depicts the change in investment in digital technologies (Panel 2a) and
robots (Panel 2b). To distinguish investments driven by the technology cycle from the busi-
ness cycles, we plot the trends in final demand (real household consumption) on the right
y-axis of each panel as a proxy for the latter.¹⁹

The investment patterns in digital technologies (robots) from 1995 to 2017 exhibit three
(two) distinct phases of acceleration and deceleration. For both technologies, their invest-
ment cycles show an acceleration after the breakthrough identified in the literature (increase
in adoption rates), followed by a deceleration (decrease in adoption rates). Following the lit-
erature (Rogers 1962), we refer to the initial surge in investment during the early stages of the
technological breakthrough as the early phase of the technology life cycle, driven by early and
majority adopters, experimenting with the initial vintages of the technology. We refer to the
subsequent slowdown in investment as thematurity phase when the remaining late adopters
integrate these technologies.

More in detail, let us consider, for instance, digital technologies: ICT. The Web 1.0 break-
through emerged in the early 1990s, and gave way to an acceleration in ICT investment (first
phase) until around 2001, followed by a decline in the investment rate of change up to around
2004/5 (second phase). Ariund that time, the second breakthrough in digital technologies
emerged, giving way to the second technology life cycle observed during our period of analy-
sis: GUI and cloud computing. Investment rates again rose until 2008 (first phase), and then
declinedbefore thenext breakthrough (bigdata andAI) in 2014 (secondphase). The third tech-
nology life cycle began around 2014, and the first phase of increased investment and adoption
is still ongoing through 2017.

Notably, the investment cycles for digital technologies and robots do not align with busi-
ness cycles, with the exception of the secondphase of theGUI&CloudComputing technology
life cycle. To address this overlap, we control for the domestic demand in our empirical strat-
egy.

Investment in robots (Figure 2b) also confirms thedistinctionbetween twobreakthroughs
and their life cycles: robotics (1995–2013) and intelligent robots (2014 onward). During the
first cycle, investment accelerates (first phase of early andmajority adopters) up to 2001, when
the technology is adopted by half of the potential adopters. From then till 2013 adoption rate
decreased, led by the diffusion through late adopters in Europe. This lasts until the break-
through combining robots with AI and the development of intelligent robots. This second
robot technology life cycle started in 2013, showing an increase in adoption rates through the
period observed in our data (2017).

¹⁹Household consumption is the largest component of aggregate demand, and tends to be less volatile than
investment, helping to identify underlying trends in the business cycle.
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Table 1: Phases of the Technology Life Cycles

Cycle Phase Period
Digital Technologies

Web 1.0 ↗ 1995-2001
↘ 2001-2004

GUI & Cloud Computing ↗ 2004-2009
↘ 2009-2013

Big Data - AI ↗ 2013-2017
Robots

Robotics ↗ 1995-2002
↘ 2002-2013

Intelligent Robots ↗ 2013-2017
Notes: This table summarizes the years of each phase in the technology
life cyclesof digital technologies and robots. A↗ indicates thefirst phase
of rapid diffusion of early vintages of the technology, whereas a ↘ indi-
cates the last phase of slower diffusion of later vintages of the technology.

Table 1 summarizes the technology life cycle phases.

Robustness Checks. To validate our results, we also regressed the investment time series
for robots and digital technologies against a linear time trend and real consumption per thou-
sand workers in 1980 aggregated at the European level.²⁰ Figure D.1 in the appendix shows
the results. The second panel shows the residuals after regressing the time series on a linear
time trend, and the third panel presents the residuals after including both the time trend and
real consumption. The figure shows that the evolution of the first difference series, and con-
sequently, the phases of investment, are very close to those in Figure 2a. Hence, we can be
confident that our approach captures periods of rapid change (either increase or decrease) in
technology investment.

The investmentpatterns in robots anddigital technologies inEurope follow thepatterns of
the technology lifecycle, characterized by two phases: a first phase of increasing rates of adop-
tion (investment) following a breakthrough, and a second phase of decreasing rates of adop-
tion (investment) as the technology matures and before the next breakthrough. In what fol-
lows, we study if the impact of digital and robot technology differs for different breakthroughs
and different phases of the technology life cycle within each of them.

²⁰We controlled for final demand, real consumption per thousand workers, to account for business cycle ef-
fects in investment in these technologies.
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4 Empirical Specification
We estimate the impact of investment in robots, ICT, and SDB on regional labor markets in
Europe, across different phases of their technology life cycles. We calculate technology ex-
posure as the change in the technology stockper worker using a shift-share measure across
different phases of each technology cycle of robots, ICT, and SDB. We estimate our baseline
model for labormarket adjustments associatedwith technology exposure during each phases.
Finally, to address identification issues, we implement an IV strategy that uses US technology
investment as an instrument for technology investment in Europe.

4.1 Shift-shareTechnologyExposure inTechnological InvestmentPhases

Because available data on robots, ICT, and SDB stocks are at the national level, we measure
the exposure of a European region 𝑟 to technology 𝐾 between years 𝑡 and 𝑡+ℎ using the stan-
dard shift-share measure in the literature (Chiacchio et al. 2018, Acemoglu and Restrepo 2020,
Dauth et al. 2021, Jestl 2024). Formally,

(𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐾
𝑟 )𝑡+ℎ

𝑡 = ∑
𝑖∈𝐼

𝑙𝑟𝑖,1980 (𝑇 𝑒𝑐ℎ𝐾
𝑐(𝑟)𝑖,𝑡+ℎ −𝑇 𝑒𝑐ℎ𝐾

𝑐(𝑟)𝑖,𝑡), (1)

where 𝑙𝑟𝑖,1980 is the share of employment of sector 𝑖 in region 𝑟 in 1980, and 𝑇 𝑒𝑐ℎ𝐾
𝑐(𝑟)𝑖,𝑡 is the

level of technology stock 𝐾 ∈ {𝑅𝑂𝐵,𝐼𝐶𝑇 ,𝑆𝐷𝐵} per thousand workers in sector 𝑖 at the
country level 𝑐(𝑟) in year 𝑡.²¹

We adjust our shift-share design to account for the segmentation of the period from 1995
to 2017 into sub-periods corresponding to different phases of the technology life cycles.

Consider the year 𝑡+ℎ′ as abreakpoint (i.e., any intermediate year between1995 and2017)
delineating two phases. We then divide the exposure defined in Equation (1) into the phase
before the breakpoint and the phase after the breakpoint, such that:

(𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐾
𝑟 )2017

1995 = ∑
𝑖∈𝐼

𝑙𝑟𝑖,1980 (𝑇 𝑒𝑐ℎ𝐾
𝑐(𝑟)𝑖,2017 −𝑇 𝑒𝑐ℎ𝐾

𝑐(𝑟)𝑖,𝑡+ℎ′

+𝑇 𝑒𝑐ℎ𝐾
𝑐(𝑟)𝑖,𝑡+ℎ′ −𝑇 𝑒𝑐ℎ𝐾

𝑐(𝑟)𝑖,1995).

By regrouping the termsandusing the exposuredefinitionderived fromEquation (1), total
²¹Consequently, our change in exposure is confined to changes in the technology stock. The sectoral shares of

employment in the region remain constant, and to avoid endogeneity issues, we use 1980 values.
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exposure is defined as the sum of the exposures calculated for each phase:

(𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐾
𝑟 )2017

1995 = ∑
𝑖∈𝐼

𝑙𝑟𝑖,1980 (𝑇 𝑒𝑐ℎ𝐾
𝑐(𝑟)𝑖,2017 −𝑇 𝑒𝑐ℎ𝐾

𝑐(𝑟)𝑖,𝑡+ℎ′)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≡ 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐾
𝑟,2

+ ∑
𝑖∈𝐼

𝑙𝑟𝑖,1980 (𝑇 𝑒𝑐ℎ𝐾
𝑐(𝑟)𝑖,𝑡+ℎ′ −𝑇 𝑒𝑐ℎ𝐾

𝑐(𝑟)𝑖,1995)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≡ 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐾
𝑟,1

,

where 1 refers to the technology investment phase between 1995 and 𝑡+ℎ′ and 2 to the tech-
nology investment phase between 𝑡 + ℎ′ and 2017. This split in exposure can be generalized
to any number of phases as follows:

(𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐾
𝑟 )2017

1995 = ∑
𝜏∈𝜏

𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐾
𝑟,𝜏 , (2)

where 𝜏 is an investment phase.
Similarly, we consider labormarket adjustments over the different phases of technological

investment. This division is straightforward:

(𝑦𝑟)2017
1995 = ∑

𝜏∈𝒯
𝑦𝑟,𝜏 ,

which represents the change in the labor market outcome variable for region 𝑟 during each
phase 𝜏 . The outcome variable, 𝑦𝑟,𝜏 , represents the change in the relevant labor market indi-
cator for region 𝑟 specifically during phase 𝜏 .

In the remaining sections of the paper, the time units for analysis are the phases of invest-
ment acceleration and deceleration, 𝜏 , identified in Section 3.3.

4.2 Baseline Specification

To assess the relationship between labor market adjustments and exposure to technology 𝐾
throughout the various phases 𝜏 ∈ 𝒯 of their life cycles, we estimate the following specifica-
tion:

𝑦𝑟,𝜏 = 𝛼+𝛽1𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑅𝑂𝐵
𝑟,𝜏 +𝛽2𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐼𝐶𝑇

𝑟,𝜏 +𝛽3𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑆𝐷𝐵
𝑟,𝜏 +𝑋′𝛾 +𝜙𝑐(𝑟) +𝑢𝑟,𝜏 , (3)
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where 𝑦𝑟,𝜏 represents theannualized change in theoutcomevariable for region 𝑟 duringphase
𝜏 ,²²𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐾

𝑟,𝜏 is the region’s exposure to technology𝐾 during the samephase,𝑋 represents
control variables (including the log of the population in 1980, the change in final demand, and
trade exposure), 𝜙𝑐(𝑟) denotes country fixed effects, and 𝑢 is the error term. Observations are
weighted by the 1980 population of the region.

We standardize technology exposure at the phase level to facilitate the comparison of ef-
fect magnitudes across different technological phases and enhance the interpretability of the
coefficients. Thus, the 𝛽 coefficients can be interpreted as the annual change in the outcome
variable 𝑦 for a one-standard-deviation (1-STD) change in exposure to technology 𝐾 during
the phase 𝜏 of the technology life cycle.

Changes in average wage are calculated as log changes, allowing the coefficients to be
interpreted as approximate percentage changes. Changes in the employment-to-population
ratio are computed directly, meaning that the coefficients can be interpreted as percentage
point (pp.) changes.

4.3 Identification and IV Strategy

The relationship between investment in automation technology and employment and wage
outcomes is endogenous. First, the decision to invest in automation technologies is influ-
enced by labor costs and availability (Bachmann et al. 2022), including labor market insti-
tutions and regulations (Presidente 2023). Second, some common industry-region level de-
terminants of automation and labor, such as labor institutions and skills, are not directly ob-
servable. The direction of the bias will differ for employment and wages, and will depend on
the omitted variable. For instance, a pool of more skilled workers is likely to favor both adop-
tion and employment (through productivity and sales). Controlling for real consumption (as
a proxy for demand shocks and the business cycle), trade exposure, and country fixed effects
partially but not completely mitigates this issue. Third, measuring automation technologies
presents several challenges. Not all robots included in the IFR data are allocated to sectors.
Moreover, measurement practices for tangible and intangible capital (such as ICT and soft-
ware) vary across countries and over time and are only partially harmonized in EU-KLEMS,
which means that the estimates derived from Equation (3) by OLS may be downward biased
due to measurement error. The overall direction of the OLS bias, given simultaneity, omit-
ted variables, and measurement errors, depends on the prevailing source of endogeneity for
different technologies.

²²We consider the annualized changes since cycle phases have different lengths. This facilitates comparisons
across cycle phases.
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Following the instrumental variable strategy employed by Acemoglu and Restrepo (2020),
andbuildingon recent studies that examine the effects of automationonEuropean regional la-
bormarkets–such as Antón et al. (2022) and Jestl (2024)–weuse technological investment data
from the United States, which is a large economy experiencing sharp automation changes, as
an instrument for European technology adoption.²³

We construct the exposure of European regions during phase 𝜏 by measuring the change
in automation technologies in the U.S. (exogenous shift) over the same phase, while holding
constant the initial employment shares from European regions (share). The instrument for
technology 𝐾 in region 𝑟 during phase 𝜏 is defined as:

𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐾,𝑈𝑆
𝑟,𝜏 = ∑

𝑖∈𝐼
𝑙𝑟𝑖,1980 (𝑇 𝑒𝑐ℎ𝐾,𝑈𝑆

𝑖,𝑡+ℎ −𝑇 𝑒𝑐ℎ𝐾,𝑈𝑆
𝑖,𝑡 ), (4)

where 𝑙𝑟𝑖,1980 is the shareof employmentof sector 𝑖 inEuropean region 𝑟 in 1980, and𝑇 𝑒𝑐ℎ𝐾,𝑈𝑆
𝑖,𝑡

is the level of technology stock 𝐾 per thousand workers in sector 𝑖 in the U.S. for year 𝑡. The
years 𝑡 and 𝑡+ℎ correspond to the start and end of the cycle phase 𝜏 , respectively.

By considering changes in technology in the US, we capture shifts in technology that in-
fluence its diffusion in Europe, although plausibly uncorrelated with regional labor markets
in Europe. We allocate investment proportionally according to the exposure of each region in
1980, based on its sectoral specialization measured with employment.

We use the following first-stage specification for each phase 𝜏 :

𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐾
𝑟,𝜏 = 𝛼+𝛽 ×𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐾,𝑈𝑆

𝑟,𝜏 +𝜀𝑟, (5)

where 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐾
𝑟,𝜏 is the endogenous exposure to technology 𝐾 in the European region 𝑟

for the phase 𝜏 , as defined in Equation (1), 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐾,𝑈𝑆
𝑟,𝜏 is the instrument for the phase, as

outlined in Equation (4), and 𝜀𝑟 is the error term.

5 Labor Market Impacts
In this section, we examine the results of our estimations of the impacts of exposure to robots,
ICT, andSDBon theemployment-to-population ratio andaveragewageduringdifferentphases
of these technologies’ life cycles. We assess the differences between the effects over the long
run (i.e., 1995–2017), for each technological life cycle defined in Sections 3.1 and 3.2, and for

²³Some studies use data from other European countries (Aghion et al. 2019, Dauth et al. 2021, Bachmann
et al. 2022). However, compared to employment trends between EU countries and the US, employment trends
in EU countries are more closely correlated because of shared global value chains and human capital flows. US
investments in automation are less likely to impact European labor markets directly.
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bothphasesof each technology life cycle identified inSection3.3: the early adoptionphase (as-
sociate with early and majority adopters), and the maturity adoption phase (associated with
late adopters). Wealsodisaggregate the results at the sectoral level to identifywhich industries
drive the results.

5.1 Analytical Framework

Table 2 outlines how we assess the net regional employment effect based on the estimated
impact of technology exposure on the employment-to-population ratio and the averagewage.
This matrix provides an interpretative framework for distinguishing between displacement,
reinstatement, and skill substitution effects.

Table 2: Interpretation of the Net Employment Effects based on Estimates at
the Regional Level

Emp-to-pop. ratio
Average Wage + 0 −

+ Reinstate 𝐻 Substitute 𝐿 with 𝐻 Displace 𝐿
0 Reinstate No Effect Displace
− Reinstate 𝐿 Substitute 𝐻 with 𝐿 Displace 𝐻

Notes: This table provides a framework to interpret the net effect of technologies on employ-
ment based on the estimates obtained at the regional level. 𝐻 refers to high-skill workers
and 𝐿 to low-skilled workers.

A positive employment-to-population ratio effect (first column) suggests a net creation of
employment (reinstatement). This may may result from the emergence of new tasks, occupa-
tions, or industries, or from a higher labor demand in existing ones, increasing the demand
for human workers in the region. Workers may be sought within the industry adopting the
technology (for instance, due to an increase in sales) or in other industries in the same region
(for instance, creatingdemand fornewservicesoutsourced locally byadopting industries). We
then infer the typeof employment that is createdbasedon the signof thewageestimate. When
the regional averagewage increases (decreases), this suggests that the employment creation is
biased toward high-skilled (low-skilled) workers. When the wage estimate is not significantly
different from zero, we interpret this as an increase in employment of both types of labor in
similar shares.²⁴

²⁴It is important to note that while differentiating the outcome variable byworker typewould provide valuable
insights, the lack of consistent data on occupations and education at the regional level prior to 2010 prevents us
from doing so. As a result, we use a combination of the employment-to-population ratio and average wage as a
proxy for this outcome.

19



Conversely, when the employment effect is negative (third column), this suggests a net de-
struction of employment (displacement). This may be because of the substitution of workers
by the technology, with an insufficient increase in sales or in the demand for ancillary indus-
tries from the same region to compensate. Again, the technology may replace workers within
the firms/industry adopting the technology, or by reducing the demand for goods or services
procured from the same region. Similarly, we can infer the type of workers who are displaced
from the wage impact. When the regional average wage increases (decreases), this suggests
that displacement is biased toward low-skilled (high-skilled) workers. When the wage esti-
mate is not significantly different from zero, we interpret this as a skill-neutral displacement
of workers.

Lastly, the skill-substitutionpatterns (secondcolumn)appearwhen the regional employment-
to-population ratio coefficient is not significant, but the averagewage coefficient is. When the
wage coefficient is positive (negative), this suggests that the employment of high-skilled (low-
skilled)workers has increased at the expense of low-skilled (high-skilled)workers—indicating
a substitution of one type of worker for another. When both coefficients are not significant,
we interpret this as a null effect on employment. This may occur when the technology either
complements or substitutes workers, and the increase in sales or in the demand for ancillary
industries located in the region compensates for the labor displacement.

Table C.22 in Appendix C summarizes the employment effects of each technology based
on the interpretation provided in Table 2.

Tables C.13 to C.14 present the IV results for the labor market impact of robots and digital
technologies—ICT and SDB combined (Table C.14) and separately (Table C.15).²⁵ Each col-
umn corresponds to a different time period. Thefirst column in each table shows the long-run
effect (1995-–2017) of a one-standard-deviation increase in regional exposure to each technol-
ogy on labormarket outcomes. Panel A presents estimates for the employment-to-population
ratio, while Panel B shows the average wage. The remaining columns in Tables C.13, C.14,
and C.15 provide estimates for both phases of each technology life cycle: the early phase, as-
sociated with early and majority adopters (when investment accelerates), and the maturity
phase,assocaited with late adopters (when investment slows).

5.2 Long-Run Impacts (1995–2017)

We find that the long-run labor market impacts of robots and digital technologies—across
the different technology life cycles (1995–2017)—differ among the three technologies. Robots
have a positive impact on the employment rate over the entire periodwith a 1-STD increase in

²⁵Tables C.1 to C.3 show the OLS results, while Tables C.10 to C.12 display the first stage results.
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exposure leading to a 0.11 pp. yearly increase in the employment-to-population ratio (Table
C.13, Panel A, Column (1)). This corresponds to a 2.42 pp. increase over the 23 years. The
effect on the regional average wages of such an increase in the employment rate is null (Table
C.13, Panel B, Column (1)). We interpret this result as indicating that robots have an effect
that is neutral toward either low- or high-skilled workers. However, this aggregate result could
mask compositional changes, such as displacement in adopting sectors offset by creation in
others, or shifts of low-skilled workers to less exposed service industries. We can only observe
the aggregate net effect.

Tables C.16 and C.17 show the regional labor market impact of exposure to robots by sec-
tor, respectively for the employment rate and the average wage. These results (Column (1))
suggest that thepositive skill-neutral impact of robots on the regional labormarket is drivenby
the creation of employment in services, without significantly altering the average wage. This
implies that higher exposure of EU regions to robots did not have anet impact on employment
in the sectors that adopt the technology—namely, industry. The positive effect is due to job
creation in ancillary (non-tradable) services.

We find no effect of digital technologies (ICT and SDB combined) on employment over
the entire period (1995–2017), as shown in Table C.14, Panel A, Column (1). However, Table
C.15 suggests that this aggregate result is due to the opposite effect of ICT and SDB on employ-
ment and wages. A 1-STD increase in exposure to ICT (SDB) leads to a 0.05 (-0.06) pp. yearly
increase (decrease) in the employment-to-population ratio (Table C.15, Panel A, Column (1)),
i.e., 1.1 (1.32) pp. increase (decrease) over the entire period. Since, on average, regions are
highly exposed to both ICT and SDB (Figure E.1), the two effects offset each other. However,
the figure also shows that several regions are mostly exposed to one of the two technologies.
These regions have experienced an asymmetric employment response to exposure to digital
technologies depending on the dominant technology.

We find an opposite impact of ICT and SDB exposure also on the average regional wage
in the long run (1995–2017). Regions with a 1-STD higher exposure to ICT (SDB) have seen a
yearly decrease (increase) in the average yearly regional wage by −0.23 (0.26) percent (Table
C.14, panel B, Column (1)). Consequently, for regions with balanced exposure to both, the
net wage effect is small. For regions predominantly exposed to one type, the wage effects are
more pronounced. Again, we cannot rule out various compensations in the distribution of
jobs over this long time period. However, regions exposed more to ICT than to SDB have seen
a reinstatement of low-skilled workers, with wages declining both in industry and services
(Table C.21, Column (1)). Regions exposed more to SDB than to ICT, conversely, have seen
a displacement of low-skilled workers, both in industry and services. This may be due to the
canonical skill bias of the technology, which replaces mainly low-skilled routine tasks.
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5.3 The Role of Technology Life Cycles: Short-Run Impacts

As suggested by the literature, long-run impacts of technological investments on the labor
marketmay level off short-run impacts of each technology breakthrough, and/or impacts tak-
ing place during different phases of their life cycle. We explore these short-run dynamics in
this section, for robots and digital technologies, using the same interpretative framework pre-
sented in Table 2.

Table C.13 reports results for the two life cycles of robot technology: robotics (Column (2))
and intelligent robots (Column (5)). The robotics cycle is further divided into the early phase
(Column (3)), when early and majority adopters are more likely to invest, and the maturity
phase (Column (4)), when late adopters aremore likely to invest. For the recent breakthrough
in intelligent robotics, we observe only the beginning of the first phase up to 2017.

We find a positive impact of robots on employment for both breakthroughs, though con-
siderably larger for the first one. During the robotics cycle (1995–2013), a 1-STD increase in
robot exposure over this period leads to a 2.16 percentage point increase in the employment-
to-population ratio (0.12 pp per year). Most of this positive effect occurs during the early
phase, as indicated by the 0.22 estimate in column (3) of Table C.13 (panel A). During the
intelligent robots cycle (2013–2017), for which we only observe the early phase, we also find a
positive impact on employment, though of a lower magnitude (0.07 pp per year). However, it
is important to note that the early phase of intelligent robots may not yet be complete, as our
analysis is limited by data availability to 2017.

We then examine the estimates for the average wage in Panel B of Table C.13 to determine
whether the employment impact was biased toward a specific labor type. For the robotics cy-
cle (1995–2013), we find a negative but statistically insignificant coefficient (Panel B, Column
(2)). Similarly, the early phase of this cycle exhibits a negative coefficient but with large stan-
dard errors. Overall, this suggests that the positive employment effect observed during this
cycle is not skewed toward high-skill workers and may instead reflect an increase in low-skill
employment. However, the large standard errors observed in this column indicate hetero-
geneity across regions.

For the early phase of the intelligent robots cycle (2013–2017), wefindapositive and signif-
icant coefficient, suggesting that the employment gains from this technological breakthrough
primarily benefit high-skill workers rather than low-skill ones. As these new robots integrate
AI and gain mobility, they can substitute low-skilled workers in tasks increasingly susceptible
to automation and routinization via intelligent control.

Tables C.16 andC.17 further confirm that the positive employment effect observed during
the first phase of the robotics life cycle (Column (3) for the first phase, or (2) for the overall first
cycle) is not driven by the sectors with the highest adoption shares of robots (i.e., industry).
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Instead, it reflects increased demand in related services, as employment in the service sector
grows while the average wage remains stable, suggesting a neutral effect on skill composition.

For digital technologies (ICT and SDB combined), we find that despite the null effect over
the long run, there is a significant impact on the employment rate, primarily concentrated
during the Web 1.0 cycle (1995–2004) (Table C.14, Panel A, Column (2)). During this first tech-
nology life cycle, a 1-STD increase in exposure to digital technologies leads to yearly decline
of 0.09 percentage points in the employment-to-population ratio (totaling −0.81pp over the
9-year cycle). This negative impact is concentrated during the maturity phase of the Web 1.0
cycle (2001–2004) (Column (4)), whereas the early phase (1995–2001) had a positive effect on
employment (Column (3)).

Examining Panel B of Table C.14 (Columns (2), (5), and (8)), we find that digital technolo-
gies re associated with gains for high-skilled workers during the Web 1.0 cycle (1995–2004).
A 1-STD increase in exposure to digital technologies during this period leads to a yearly in-
crease of 0.24% in the averagewage (totaling 2.16% over the cycle), suggesting that low-skilled
workers are, on average, displaced. When analyzing the two phases of this cycle separately,
we see that this skill-biased impact is primarily driven by the maturity phase (Column (4)),
where low-skilled workers appear to be replaced as ICT and SDB-enabled automation takes
over their tasks.

For the subsequent breakthroughs—the Graphical User Interface & Cloud (2004–2013)
and Big Data & AI (2013–2017)—we do not find any significant impact of digital technolo-
gies on the employment-to-population ratio. However, during the early phase of both cycles
(Panel B, Columns (6) and (8)), we observe positive estimates for the average wage. This sug-
gests that while the net employment effect remained neutral, there were gains in the average
wage in regionswith higher exposure to digital technologies as early adopters embraced these
new vintages.

As noted above, in the long run, ICT and SDB investments have opposite effects on em-
ployment and wages, which offset one another for regions exposed to both. We now examine
how these effects differ across the two phases within each of the three life cycles using the
disaggregated results from Table C.15. We again find that most of the impact on employment
occurs during theWeb 1.0 technology life cycle (1995–2004) (Table C.15, Column (2)). Regions
with a 1-STD higher exposure to ICT (SDB) experience a yearly increase (decrease) in the em-
ployment rate of 0.22 (−0.29) percentage points. The stronger negative impact of SDB drives
the overall negative effect on employment in regions that are exposed to this breakthrough in
both ICT and SDB (Table C.14, Panel A, Column (2)).

For both technologies, the employment effects are even stronger when disaggregated by
theearly andmaturityphasesof theWeb1.0 life cycle (TableC.15, Columns (3) and (4)). Specif-
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ically, ICT positively impacted the employment-to-population ratio during the early phase
(0.62 pp. yearly, totaling +3.72 pp.) but had a negative effect in the maturity phase (0.71 pp.
yearly, totaling, −2.13 pp.). Conversely, SDB had a negative effect in the early phase (0.37 pp.
yearly, totaling −2.22 pp.) but a positive impact in thematurity phase (0.38 pp. yearly, totaling
+1.14 pp.).

During the second technology life cycle, GraphicalUser Interface (GraphUI)&CloudCom-
puting (2004–2013), the impact of ICT and SDB penetration on regional employment is sub-
stantially smaller, and statistically significant only in thematurity phase (Table C.15, Columns
(5) to (7)). Once again, ICT and SDB exhibit opposite effects.

Examining the estimates in Panel B of Table C.15 on average wages provides further in-
sights into which types of labor were most affected during each phase of both the first and
second life cycles. The increase in employment driven by ICT during the early phase (of the
Web 1.0 life cycle) is primarily associated with an expansion in low-skilled employment. In
contrast, the employment decline during the same early phase of the first life cycle due to
SDB suggests the substitution of low-skilled workers with high-skilled ones. During the matu-
rity phase, these effects reverse direction, but they are not statistically significant, suggesting
that the initial phase dominated by early and majority adopters primarily drives the observed
changes in skill composition during the adoption of these ICT and SDB vintages.

Wedonot find significant impacts on averagewages during the second life cycle (GraphUI
– CloudComputing, 2004–2013), indicating that technology adoption in thematurity phase of
this cycle did not substantially alter the relative demand for skilled and unskilled workers.

Tables C.20 and C.21 show that, similar to robots, the effects of ICT and SDB on employ-
ment accrue mainly in the service sector. The key difference is that while robots are primarily
adopted in industry, ICT and SDB are used in both industry and services.

5.4 Implications for the Technology Life Cycle Theory of Employment
Impacts

Taken together, our results empirically complement existing theories on how the technology
life cycle of digital and automation technologies shapes labor markets in the short run. To
summarize, the theory posits that during the early phase of the technology cycle, correspond-
ing to early and majority adopters, early adopters are expected to hire more educated and
skilled workers (Bartel and Lichtenberg 1987, Aghion 2002, Vona and Consoli 2015). Our find-
ings partially support a skill bias during the early stage of a technology’s life cycle. We observe
this pattern for investment in SDB, but not for ICT and robots.

For robots, we see an increase in the employment-to-population ratio during the early
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phase of both cycles, with no skill bias. Different from theory predictions, we do not observe
an increase in the average compensation. The averagewage of regionsmost exposed to robots
remains unaffected in any phase of the first technology life cycle. Early adopters in the first
phase of the second cycle show high-skill bias driven by services, not among direct adopters
of robots in industry.

For ICT, we observe a net reinstatement of low-skilled jobs in the early phase of Web 1.0,
followed by a consistent displacement of low-skilled workers in the maturity phase. The fact
that the positive impact on the employment rate for low-skilled workers is primarily observed
during the first phase of the technology life cycle suggests that increases in sales and other
factors driving labor demand in complementary services are largely concentrated in regions
adopting the technology during this early phase (early and majority adopters), rather than in
regions that adopt the technology during its maturity phase.

Intangible technologies such as SDB more closely align with theory predictions that dur-
ing the phase of early and majority adopters (early technology phase), regions most exposed
to the technology replace low-wage jobs, inducing an increase in the averagewage (e.g., in ser-
vice sectors such as professional and information services). We observe this pattern especially
in the first technology life cycle, Web 1.0. This is reversed in the maturity phase of the technol-
ogy life cyclewhen regions experience an increase in the employment ratio biased towards low
skilled workers. This likely reflects gains in productivity or other demand-enhancing effects
that emerge once the technology becomes standardized and widely adoptedin the maturity
phase, creating new jobs in services for lower-skilled workers.

5.5 Validity and Robustness Checks

Theempirical findings presented above are based on an instrumental variable (IV) estimation
strategy designed to mitigate potential endogeneity concerns. In this section, we assess the
validity of our identification strategy and examine the robustness of our results.

First, TablesC.10 toC.12 in theappendixpresent thefirst-stage regression results for robots,
ICT, and SDB across different phases of the technology life cycle. The estimated coefficients
are consistently positive and statistically significant across all specifications, supporting the
strength and relevance of the instrument.

Second, given that our IV strategy follows a Bartik-type approach, we implement the va-
lidity checks proposed by Goldsmith-Pinkham et al. (2020). Specifically, we decompose the
IV estimator into the Rotemberg weights (𝛼𝑘) and the just-identified estimators (𝛽𝑘). This
decomposition enables a clearer understanding of the influence of each instrument on the
overall estimate. If a particular instrument is misspecified, the Rotemberg weights indicate
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the extent to which this misspecification contributes to biasing the estimator. When 𝛼𝑘 is
small, any potential bias from the 𝑘𝑡ℎ instrument has limited impact on the aggregate IV esti-
mate (Goldsmith-Pinkham et al. 2020). This diagnostic thus helps evaluate the stability of the
estimator with respect to dominant sources of identifying variation.

In light of this, Tables C.23 to C.25 in the appendix show the summary statistics of the
Rotembergweights, identifying the top five country-industry combinations (i.e., instruments)
that account for the largest share.

Regarding robots, Table C.23 shows that the top five country-industry pairs account for
92.25% of the total absolute sum of Rotemberg weights. Unsurprisingly, the variation is pri-
marily driven by the manufacturing sector, which is the primary adopter of industrial robots
in the IFR data (Müller 2022). The weight concentration indicates a strong influence of Ger-
many on the estimates, which alone accounts for nearly 64% of the total. We further explore
this in Figure C.1, which plots the just-identified estimator (𝛽𝐾) on the y-axis and their Rotem-
berg weights (𝛼𝑘) on the x-axis, representing the weight each cell receives in the Bartik IV es-
timator. Marker size reflects the absolute magnitude of the weight, and color differentiates
between cells with positive (blue) and negative (orange) weights. Figure C.1 indicates that the
German manufacturing instrument yields an estimate close to the overall average. However,
some heterogeneity exists—especially among instruments with very small weights. To assess
whether this concentration biases our results, we conducted an additional robustness check,
excluding German regions from the sample. The results, presented in Table C.26, are closely
aligned with those in Table C.13, suggesting that the dominance of German instruments does
not significantly distort the IV estimates.

Concerning ICT exposure, Table C.24 shows that the five country-industry pairs with the
largest Rotemberg weights account for 43.37% of the total absolute weight. Notably, the most
recurrent industry across countries is sectorG–J,whichcomprises informationandcommunication-
related activities. These sectors are not only major users of ICT technologies but they are
also central to their production and innovation, which helps explain their prominent role in
driving the instrument’s identifying variation. We further explore the distribution of Rotem-
berg weights and the heterogeneity of the just-identified estimates in Figure C.2, which plots
each 𝛽𝑘 (the just-identified IV estimate using a single instrument) against its corresponding
Rotemberg weight 𝛼𝑘. A small number of instruments receive relatively large weights, and
their associated 𝛽𝑘 estimates are concentrated around the overall IV estimate (represented by
the dashed line in the figure).²⁶ The presence of influential units underscores the importance
of robustness checks. Given the prominent influence of Spanish regions in sectors O–U and

²⁶Although some instruments receive negative weights, their corresponding 𝛽𝑘 values also tend to cluster
around the overall IV estimate, which somewhat mitigates concerns regarding identification.
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G–J (as highlighted in Table C.24), we perform a robustness check by excluding these Spanish
regions. Table C.27 indicates that the estimates remain closely aligned with those reported in
Table C.15, providing further confidence in the robustness of the IV results.

Concerning software and database, Table C.25 shows that the top five industries with the
largest Rotemberg weights account for 55.57% of the total sum of absolute weights. These in-
dustries include not only key producers of such technologies (J), but we also observe a strong
influence from industry K–N, which includes financial services. This is consistent with ex-
pectations, as this sector heavily relies on software and databases. As with ICT, the instru-
ments with the largest weights tend to cluster around the overall IV estimated coefficient, as
displayed in Figure C.3. Similar to what was observed in the ICT case (although with sub-
stantially smallerweights anddifference in coefficients), the observedheterogeneity primarily
stems from instruments with lower weights.

Lastly, an important concern relates to thepre-trenddynamics inouroutcomevariables of
interest, which serve as additional evidence to support the validity of the instrumental variable
strategy. Our instruments—constructed by interacting changes in U.S. technology stock with
NUTS-2 industrial employment shares in 1980—rely on the assumption that these historical
employment structures are exogenous to subsequent employment dynamics. Yet, if regions
more exposed to these technologiesdue to their 1980s sectoral compositionwere already expe-
riencing different employment-to-population trends prior to 1995, this would raise concerns
about the validity of our identification strategy. In such a case, the instrument might be cap-
turing not only the effect of technology adoption, but also underlying structural changes in
employment patterns that predate the observed technological shifts. Therefore, testing for
pre-existing differential trends allows us to assess whether the instrument is fully exogenous
or instead correlated with prior regional labor market trajectories, which would undermine
the causal interpretation of the estimated effects (Acemoglu and Restrepo 2020).

In lightof this, TableC.28 reports results forouroutcomevariables—employment-to-population
ratio and average wages—for the period 1983–1989 (prior to our main period of analysis) and
for 1995-2001, the first phase of the first cycle.²⁷ The coefficients for the pre-trend period for
robots and ICT are small and mildly significant, while for software and database they are not
significant.

The main reason for this is that, due to data limitations, we estimate technology life cycles
starting in 1995. However, it is well possible that the first cycle (and its first phase) start well
before 1995, as discussed in our technical review in Section 3. This seems to be particularity

²⁷Note that data on two control variables—imports and real consumption—arenot available for the 1983–1989
period. As a result, these controls were excluded from the regressions reported in Table C.28. This explains why
the coefficients in the second column of Table C.28 do not exactly match those in the third column C.15.
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the case for robots. As suggested by Figure 2b, 1995-2001 seems to be the end of a long phase
that starts before, which would explain the more significant coefficient. As noted in Section 3
a limitation of our analysis is that we cannot perfectly identify the first and last technology life
cycles.

6 Conclusion
This paper investigates the impact of labor market exposure to multiple breakthroughs of
robots, information and communication technologies, and software anddatabases across 158
European regions in 12 countries between 1995 and 2017. We identify distinct technology
breakthroughs, and examine their correlation with periods of acceleration and deceleration
in investment trends. We define phases of rapid investment growth as the early phase of the
technology adoption life cycle (i.e., corresponding to early adopters), while periods of deceler-
ation in investment grwoth represent thematurity phase, corresponding to late adopters. Our
focus is on the labor market impacts of these technologies—specifically, on the employment-
to-population ratio and average wage—during the early and maturity phases. To address en-
dogeneity concerns, we use a shift-share IV strategy leveraging U.S. investments as an instru-
ment for European technological investment.

Our analysis yields fourmain findings. First, we provide partial support for the theory that
technologyadoption tends tobemorehigh-skilledbiasedduring theearly adoptionphase. We
observe this in the case of intangible digital technologies like software and databases (which
tend to displace low-skilled workers or substitute them with high-skilled ones in the early
adoption phase), but not for tangible technologies such as ICT (which tended to reinstate
low-skilled workers in its early phase) and robots (where the initial robotics cycle showed
skill-neutral employment gains in its early phase). Second, the most pronounced labor mar-
ket impacts of these technologies are confined to the first technology life cycle—Web 1.0 and
Robotics, approximately 1995–2004. During this period, robots and digital technologies, re-
spectively, had a significant effect on employment and wages. Third, while ICT and SDB are
highly complementary technologies, they have opposing labor market effects. ICT is associ-
ated with the reinstatement of low-skilled jobs in its early phase, whereas SDB is associated
with the displacement of low-skilled workers. Finally, the labor market effects of robots, ICT,
and SDB are predominantly driven by adjustments in the services sector. Even though robots
are primarily adopted in industry, their net positive employment impacts are observed pri-
marily in services.

These findings have several policy implications. One main implication of our study is that
policies should pay closer attention to the short-term effects of automation, which vary signif-
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icantly among technologies and across the two phases of their life cycles. Targeted interven-
tions are needed to support workers adversely affected by automation in the short run. Specif-
ically, policies should consider measures to mitigate the negative short-term negative effects
on employment seen in the maturity phase of ICT investments and the early phase of SDB in-
vestments. Additionally, it is crucial to address the long-term wage decrease associated with
ICT adoption, which risks exacerbating regional wage inequality. Labor market institutions,
alongside active labormarket policies such as retraining and skills development, couldplay an
important role in alleviating these adverse effects, from attracting early adopters which have
displacement effects.

Our study has some limitations, suggesting directions for future research. The main lim-
itation is the lack of granular data on the adoption of specific technologies across regions.
While our data measure country-specific differences in exposure to technology, our approach
assumes uniform adoption of these technologies across regions. Additionally, our analysis
cannot differentiate between early and late-adopting firms within a region. This precludes
finer-grained heterogeneity in technology diffusion patterns and highlights the need formore
comprehensive comparative studies of countries and regions, using comparable firm-level
and employee data. Moreover, given the varying impacts on different worker types suggested
by our aggregate findings, a task-based approach using detailed employee data could provide
more precise insights into whether technology life cycles significantly affect workforce com-
position and skill demand. Further research should also investigate spatial spillovers and the
interaction between technology adoption and labor mobility across regions.
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Appendices

A Data

Sector aggregation We consider six sectors as the result of the aggregation and compatibi-
lization betweenNACERev. 1.1 and Rev. 2. Agriculture (A) corresponds to activities that relate
to agriculture, forestry, and fishing. Industry (B-E) refers to manufacturing, mining and quar-
rying, utilities; except Construction (F)which is a sector in itself. Market Services (G-J) encom-
pass service activities such as wholesale and retail trade, accommodation and food service ac-
tivities, transportation and storage, along with information and communication. Financial &
Business Services (K-N) correspond to financial and insurance activities; real estate activities;
professional, scientific, technical, administration and support service activities. Lastly, Non-
Market Services (O-U) regroup all other services such as public administration and defense,
education, human health and social work activities; and any other service activities.

Table A.1 summarizes the aggregation of sectors by providing the corresponding sections
in both revisions of the NACE classification. Table A.2 presents the overview of both revisions
of the NACE classification and the correspondence.

Table A.1: Sectors of economic activities and NACE sections

Sector NACE Rev. 2 NACE Rev. 1.1
A Agriculture A A, B
B-E Industry B, C, D, E C, D, E
F Construction F F
G-J Market Services G, I, H, J G, H, I
K-N Financial Business Services K, L, M, N J, K
O-U Non-Market Services O, P, Q, R, S, T, U L, M, N, O, P, Q
Notes: This table presents the classification of 1-digit NACE industries into sectors used
in the analysis. The classification is derived from the NACE classifications to be com-
patible across the two versions Rev. 1.1 and Rev. 2. Table A.2 summarizes both NACE
classifications in the appendix.
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Table A.2: Overview of NACE classifications

NACE Rev. 2 NACE Rev. 1.1
A Agriculture, forestry and fishing A Agriculture, hunting and forestry

B Fishing
B Mining and quarrying C Mining and quarrying
C Manufacturing D Manufacturing
D Electricity, gas, steam and air conditioning

supply
E Electricity, gas and water supply

E Water supply, sewerage, waste manage-
ment and remediation activities

F Construction F Construction
G Wholesale and retail trade; repair of motor

vehicles and motorcycles
G Wholesale and retail trade: repair of mo-

tor vehicles, motorcycles and personal and
household goods

I Accommodation and food service activities H Hotels and restaurants
H Transportation and storage I Transport, storage and communications
J Information and communication
K Financial and insurance activities J Financial intermediation
L Real estate activities K Real estate, renting and business activities
M Professional, scientific and technical activi-

ties
N Administrative and support service activi-

ties
O Public administration and defence; com-

pulsory social security
L Public administration and defence; com-

pulsory social security
P Education M Education
Q Human health and social work activities N Health and social work
R Arts, entertainment and recreation O Other community, social and personal ser-

vices activities
S Other service activities
T Activities of households as employers;

undifferentiated goods- and services-
producing activities of households for own
use

P Activities of private households as employ-
ers and undifferentiated production activi-
ties of private households

U Activities of extraterritorial organisations
and bodies

Q Extraterritorial organisations and bodies

Notes: This table presents the correspondence between the two revisions (Rev. 2. and Rev. 1.1) of the NACE
classification.
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B Descriptive Statistics

Table B.1 shows the summary statistics of the change in the outcome variables, in the tech-
nology stock (per thousand workers in 1980), as well as in imports and final demand, over the
whole period of analysis (1995–2017).

Table B.1: Summary Statistics of Long Run Change in Variables (1995–2017)

Variable Mean SD Min Q1 Q2 Q3 Max N
Emp 0.8 0.6 -0.2 0.5 0.8 1.1 2.6 158
Emp-to-pop 0.2 0.1 -0.3 0.1 0.2 0.3 0.6 158
Wage 0.7 0.6 -0.5 0.3 0.6 1.0 2.5 158
ROB 0.0 1.0 -1.2 -0.7 -0.3 0.4 2.9 158
ICT 0.0 1.0 -1.2 -0.8 -0.5 0.8 3.2 158
SDB 0.0 1.0 -1.4 -0.8 -0.3 0.6 3.2 158
Imports 2.0 0.8 0.4 1.4 1.9 2.7 3.9 158
Final demand 5.0 7.2 -8.0 -0.4 5.0 8.0 42.0 158

Notes: This table shows the summary statistics of the change in the outcome, independent, and control variables for the 158
NUTS-2 regions between 1995 and 2017. Outcomes variables are employment, employment-to-population ratio (Emp-to-pop.
ratio)—measured as the total number of employed persons aged 15-64 over the total population—, average yearly wage per
worker (Wage) in thousands euros of 2015—calculated as the ratio between total labor compensation and the level of employ-
ment. All outcome variables are annualized (this is, divided by the number of years in the period). Data are from the ARDECO
database. Independent variables are technology stock (per thousand workers in 1980) in robots (ROB), communication and
information technology (ICT), and software and database (SDB). Data are from the IFR for robots and EU-KLEMS for the rest.
Control variables are imports—measured as imports from China using the OECD Trade in Value Added database—and final
demand—measured as the real consumption index from the Inter-Country Input-Output database.

C Regressions

C.1 OLS Regressions

Impact of Robots and Digital Technologies in Regional Labor Markets – OLS
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Table C.1: Impact of Robots during Robot Phases

OLS Reg. - Dep. var.: Annualized Δ in Outcome Variable
All Robotics Intelligent Robots
(1) (2) (3) (4) (5)

1995-2017 1995-2013 1995-2002 2002-2013 2013-2017
[A] Δ Employment-to-population× 100

ROB Exposure 0.08∗∗∗ 0.09∗∗∗ 0.14∗∗∗ 0.19∗∗∗ −0.12∗∗∗

(0.02) (0.02) (0.04) (0.03) (0.03)
R2 0.35 0.36 0.33 0.43 0.46
Num. obs. 158 158 158 158 158
F statistic 16.68 17.07 15.02 23.03 26.08
[B] Δ Average wage (in log)× 100

ROB Exposure −0.18∗∗ −0.32∗∗∗ −0.77∗∗∗ −0.17∗∗∗ 0.51∗∗∗

(0.07) (0.07) (0.12) (0.04) (0.06)
R2 0.24 0.38 0.31 0.58 0.38
Num. obs. 158 158 158 158 158
F statistic 9.84 18.70 13.97 41.40 18.99
Notes: ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses. This table summarizes the estimated co-
efficients for the OLS regressions where the outcome variable is the annualized change in employment-to-population ratio
(Panel A) and log-change in average wage (Panel B) over the robot technology adoption life cycle and phases. The first col-
umn is the long-difference estimate for the entire period (1995–2017). The second column corresponds to the effect of the
entire Robotics cycle, while the third and fourth columns correspond to the phases of the Robotics cycle. The last column
shows the coefficient for the first phase of the Intelligent Robots cycle. Exposure to robots (ROB) is calculated as shift-share
variables and then standardized. Panel A coefficients represent thepercentagepoint change in the regional employment-to-
population ratio for a one-standard-deviation increase in technology exposure during the cycle phase. Panel B coefficients
indicate the corresponding percentage change in the regional average wage. Control variables include the log of the popu-
lation in 1980, the change in ICT and SDB, final demand and trade exposure respectively over the cycle phase, and country
fixed effects. Regressions are weighted by the population in 1980.
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Table C.2: Impact of ICT and SDB during Digital Technology Phases

OLS Reg. - Dep. var.: Annualized Δ in Outcome Variable
All Web 1.0 GraphUI - Cloud Big Data - AI
(1) (2) (3) (4) (5) (6) (7) (8)

1995-2017 1995-2004 1995-2001 2001-2004 2004-2013 2004-2009 2009-2013 2013-2017
[A] Δ Employment-to-population× 100

ICT Exposure 0.02∗ 0.01 0.01 −0.15∗∗∗ −0.10∗∗∗ 0.09∗∗∗ −0.27∗∗∗ −0.02
(0.01) (0.03) (0.04) (0.05) (0.03) (0.03) (0.05) (0.03)

SDB Exposure −0.01 −0.01 0.04 −0.08∗ −0.04 0.01 −0.16∗∗∗ −0.12∗∗∗

(0.02) (0.03) (0.04) (0.04) (0.04) (0.02) (0.03) (0.03)
R2 0.35 0.49 0.22 0.18 0.57 0.29 0.85 0.46
Num. obs. 158 158 158 158 158 158 158 158
F statistic 16.68 28.69 8.80 6.87 40.52 12.20 167.24 26.08
[B] Δ Average wage (in log)× 100

ICT Exposure 0.21∗∗∗ 0.30∗∗∗ 0.30∗∗∗ 0.72∗∗∗ 0.06 0.22∗∗∗ 0.32∗∗ −0.18∗∗∗

(0.05) (0.09) (0.11) (0.12) (0.05) (0.06) (0.14) (0.06)
SDB Exposure 0.06 −0.21∗ −0.23∗ −0.04 0.11∗∗ 0.12∗∗ −0.23∗∗ 0.28∗∗∗

(0.07) (0.11) (0.12) (0.10) (0.05) (0.06) (0.10) (0.07)
R2 0.24 0.39 0.23 0.51 0.56 0.37 0.70 0.38
Num. obs. 158 158 158 158 158 158 158 158
F statistic 9.84 19.76 8.95 31.30 39.26 17.59 69.46 18.99
Notes: ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses. This table summarizes the estimated coefficients for the OLS
regressions where the outcome variable is the annualized change in employment-to-population ratio (Panel A) and log-change in average wage
(Panel B) over the digital technologies adoption life cycle and phases. The first column is the long-difference estimate for the entire period (1995–
2017). The second and fifth columns correspond to the two entire cycles, while the third and fourth columns correspond to the phases of the
Web 1.0 cycle, the sixth and seventh columns correspond to the two phases of the Graphical User Interface and Cloud Computing cycle, and the
last column corresponds to the first phase of the Big Data and AI cycle. Exposure information and communication (ICT), and software-database
(SDB), are calculated as shift-share variables and then standardized. Panel A coefficients represent the percentage point change in the regional
employment-to-population ratio for a one-standard-deviation increase in technology exposure during the cycle phase. Panel B coefficients indicate
the corresponding percentage change in the regional average wage. Control variables include the log of the population in 1980, the change in robot,
final demand and trade exposure respectively over the cycle phase, and country fixed effects. Regressions are weighted by the population in 1980.
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Table C.3: Impact of Digital Technologies

OLS Reg. - Dep. var.: Annualized Δ in Outcome Variable
All Web 1.0 GraphUI - Cloud Big Data - AI
(1) (2) (3) (4) (5) (6) (7) (8)

1995-2017 1995-2004 1995-2001 2001-2004 2004-2013 2004-2009 2009-2013 2013-2017
[A] Δ Employment-to-population× 100

DIG Exposure 0.05∗∗∗ 0.07∗∗ 0.09∗∗ −0.11∗∗ −0.11∗∗∗ 0.11∗∗∗ −0.29∗∗∗ −0.13∗∗∗

(0.01) (0.03) (0.04) (0.05) (0.03) (0.03) (0.03) (0.02)
R2 0.39 0.50 0.24 0.14 0.55 0.30 0.82 0.48
Num. obs. 158 158 158 158 158 158 158 158
F statistic 24.59 38.89 12.12 6.38 47.32 16.04 169.30 35.02
[B] Δ Average wage (in log)× 100

DIG Exposure −0.01 −0.29∗∗∗ −0.31∗∗ 0.13 0.15∗∗∗ 0.09 0.18∗∗ 0.06
(0.07) (0.11) (0.13) (0.13) (0.04) (0.07) (0.09) (0.06)

R2 0.12 0.37 0.21 0.39 0.57 0.30 0.69 0.32
Num. obs. 158 158 158 158 158 158 158 158
F statistic 5.23 22.82 10.07 24.01 50.89 16.48 85.52 17.99
Notes: ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses. This table summarizes the estimated coefficients for the OLS
regressions where the outcome variable is the annualized change in employment-to-population ratio (Panel A) and log-change in average wage
(Panel B) over the digital technologies adoption life cycle and phases. The first column is the long-difference estimate for the entire period (1995–
2017). The second andfifth columns correspond to the two entire cycles, while the third and fourth columns correspond to the phases of theWeb 1.0
cycle, the sixth and seventh columns correspond to the two phases of the Graphical User Interface and Cloud Computing cycle, and the last column
corresponds to the first phase of the Big Data and AI cycle. Exposure of digital technologies (ICT and SDB aggregated), are calculated as shift-share
variables and then standardized. Panel A coefficients represent the percentage point change in the regional employment-to-population ratio for a
one-standard-deviation increase in technology exposure during the cycle phase. Panel B coefficients indicate the correspondingpercentage change
in the regional average wage. Control variables include the log of the population in 1980, the change in robot, final demand and trade exposure
respectively over the cycle phase, and country fixed effects. Regressions are weighted by the population in 1980.

Impact of Robots and Digital Technologies in Regional Labor Markets by Sector – OLS
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Table C.4: Impact of Robots on Sectoral Employment Rate. Robot Phases

OLS Reg. - Dep. var.: Annualized Δ Employment-to-population × 100
All Robotics Intelligent Robots
(1) (2) (3) (4) (5)

1995-2017 1995-2013 1995-2002 2002-2013 2013-2017
[A] Agriculture
ROB Exposure 0.02∗∗∗ 0.03∗∗∗ 0.03∗∗∗ 0.01 −0.01∗

(0.01) (0.01) (0.01) (0.00) (0.00)
R2 0.16 0.21 0.16 0.27 0.07
Num. obs. 158 158 158 158 158
F statistic 5.93 8.28 5.67 10.97 2.27
[B] Industry
ROB Exposure 0.01∗ 0.00 0.02 0.05∗∗∗ −0.00

(0.01) (0.01) (0.02) (0.02) (0.01)
R2 0.13 0.14 0.53 0.14 0.51
Num. obs. 158 158 158 158 158
F statistic 4.61 5.02 34.44 4.84 31.28
[C] Services
ROB Exposure 0.04∗∗∗ 0.06∗∗∗ 0.08∗∗∗ 0.13∗∗∗ −0.10∗∗∗

(0.02) (0.01) (0.03) (0.01) (0.02)
R2 0.37 0.43 0.22 0.52 0.37
Num. obs. 158 158 158 158 158
F statistic 17.64 22.71 8.53 32.45 17.82
Notes: ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses. This table summarizes the estimated
coefficients for theOLS regressionswhere theoutcomevariable is the annualized change in employment-to-population
ratio in Agriculture (Panel A), Industry (Panel B) and Services (Panel C) over the robot technology adoption life cycle
and phases. The first column is the long-difference estimate for the entire period (1995–2017). The second column
corresponds to the effect of the entire Robotics cycle, while the third and fourth columns correspond to the phases of
the Robotics cycle. The last column shows the coefficient for the first phase of the Intelligent Robots cycle. Exposure to
robots (ROB) is calculated as shift-share variables and then standardized. Coefficients represent the percentage point
change in the sectoral employment-to-population ratio for a one-standard-deviation increase in technology exposure
during the cycle phase. Control variables include the log of the population in 1980, the change in ICT and SDB, final
demand and trade exposure respectively over the cycle phase, and country fixed effects. Regressions are weighted by
the population in 1980.
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Table C.5: Impact of Robots on Sectoral Average Wage.

OLS Reg. - Dep. var.: Annualized Δ Average wage (in log) × 100
All Robotics Intelligent Robots
(1) (2) (3) (4) (5)

1995-2017 1995-2013 1995-2002 2002-2013 2013-2017
[A] Agriculture
ROB Exposure −1.49∗∗∗ −1.53∗∗∗ −3.07∗∗∗ −0.13 0.37

(0.21) (0.25) (0.54) (0.25) (0.32)
R2 0.43 0.44 0.33 0.19 0.34
Num. obs. 156 156 157 157 157
F statistic 22.85 23.66 14.56 7.12 15.75
[B] Industry
ROB Exposure −0.10 0.01 −0.21 −0.20∗∗ 0.09

(0.08) (0.09) (0.18) (0.09) (0.12)
R2 0.32 0.35 0.19 0.43 0.18
Num. obs. 158 158 158 158 158
F statistic 14.53 16.72 7.01 22.87 6.46
[C] Services
ROB Exposure −0.10 −0.26∗∗∗ −0.76∗∗∗ −0.07∗ 0.53∗∗∗

(0.07) (0.06) (0.12) (0.04) (0.07)
R2 0.23 0.34 0.26 0.47 0.34
Num. obs. 158 158 158 158 158
F statistic 8.95 15.65 10.74 27.34 15.40
Notes: ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses. This table summarizes the
estimated coefficients for the OLS regressions where the outcome variable is the annualized log-change in
average wage in Agriculture (Panel A), Industry (Panel B) and Services (Panel C) over the robot technology
adoption life cycle and phases. The first column is the long-difference estimate for the entire period (1995–
2017). The second column corresponds to the effect of the entire Robotics cycle, while the third and fourth
columns correspond to the phases of the Robotics cycle. The last column shows the coefficient for the first
phase of the Intelligent Robots cycle. Exposure to robots (ROB) is calculated as shift-share variables and then
standardized. Coefficients can be interpreted as the percentage change in the sectoral average wage to a one-
standard-deviation increase in exposure to the technology during the cycle phase. Control variables include
the log of the population in 1980, the change in ICT and SDB, final demand and trade exposure respectively
over the cycle phase, and country fixed effects. Regressions are weighted by the population in 1980.
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Table C.6: Impact of Digital Technologies on Sectoral Employment Rate. ICT Phases

OLS Reg. - Dep. var.: Annualized Δ Employment-to-population × 100
All Web 1.0 GraphUI - Cloud Big Data - AI
(1) (2) (3) (4) (5) (6) (7) (8)

1995-2017 1995-2004 1995-2001 2001-2004 2004-2013 2004-2009 2009-2013 2013-2017
[A] Agriculture
ICT Exposure −0.00 0.00 0.00 −0.01 0.00 0.00 0.00 0.00

(0.00) (0.01) (0.01) (0.01) (0.00) (0.01) (0.01) (0.00)
SDB Exposure 0.01∗∗ 0.05∗∗∗ 0.04∗∗∗ 0.02∗ −0.01 −0.00 0.01 0.00

(0.01) (0.01) (0.01) (0.01) (0.00) (0.01) (0.01) (0.01)
R2 0.16 0.24 0.12 0.13 0.12 0.04 0.06 0.07
Num. obs. 158 158 158 158 158 158 158 158
F statistic 5.93 9.77 4.05 4.39 4.31 1.42 2.09 2.27
[B] Industry
ICT Exposure −0.00 −0.02∗ 0.00 −0.09∗∗∗ −0.09∗∗∗ −0.01 −0.13∗∗∗ −0.00

(0.01) (0.01) (0.02) (0.02) (0.02) (0.02) (0.02) (0.01)
SDB Exposure 0.00 −0.05∗∗∗ −0.10∗∗∗ −0.06∗∗∗ −0.02 −0.02 −0.06∗∗∗ −0.03∗∗∗

(0.01) (0.01) (0.02) (0.02) (0.02) (0.02) (0.02) (0.01)
R2 0.13 0.56 0.47 0.40 0.40 0.35 0.83 0.51
Num. obs. 158 158 158 158 158 158 158 158
F statistic 4.61 39.28 26.71 20.50 20.61 16.04 146.05 31.28
[C] Services
ICT Exposure 0.02∗∗ 0.03∗ 0.00 −0.05 −0.01 0.10∗∗∗ −0.14∗∗∗ −0.02

(0.01) (0.02) (0.03) (0.04) (0.02) (0.02) (0.03) (0.02)
SDB Exposure −0.03∗ −0.00 0.09∗∗∗ −0.04 −0.02 0.03∗∗ −0.10∗∗∗ −0.08∗∗∗

(0.01) (0.02) (0.03) (0.04) (0.02) (0.02) (0.03) (0.03)
R2 0.37 0.32 0.16 0.09 0.62 0.41 0.74 0.37
Num. obs. 158 158 158 158 158 158 158 158
F statistic 17.64 14.35 5.72 3.00 50.37 21.52 86.34 17.82
Notes: ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses. This table summarizes the estimated coefficients for the OLS
regressions where the outcome variable is the annualized change in employment-to-population ratio in Agriculture (Panel A), Industry (Panel B)
and Services (Panel C) over the digital technologies adoption life cycle and phases. The first column is the long-difference estimate for the entire
period (1995–2017). The second and fifth columns correspond to the two entire cycles, while the third and fourth columns correspond to the phases
of the Web 1.0 cycle, the sixth and seventh columns correspond to the two phases of the Graphical User Interface and Cloud Computing cycle, and
the last column corresponds to the first phase of the BigData and AI cycle. Exposure information and communication (ICT), and software-database
(SDB), are calculated as shift-share variables and then standardized. Coefficients represent thepercentagepoint change in the sectoral employment-
to-population ratio for a one-standard-deviation increase in technology exposure during the cycle phase. Control variables include the log of the
population in 1980, the change in robot, final demand and trade exposure respectively over the cycle phase, and country fixed effects. Regressions
are weighted by the population in 1980.
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Table C.7: Impact of ICT and SDB on Sectoral Average Wage.

OLS Reg. - Dep. var.: Annualized Δ Average wage (in log) × 100
All Web 1.0 GraphUI - Cloud Big Data - AI
(1) (2) (3) (4) (5) (6) (7) (8)

1995-2017 1995-2004 1995-2001 2001-2004 2004-2013 2004-2009 2009-2013 2013-2017
[A] Agriculture
ICT Exposure 0.80∗∗∗ −0.51 −0.82 2.13∗∗∗ 0.31 −0.38 −0.25 0.10

(0.16) (0.36) (0.56) (0.77) (0.33) (0.36) (0.72) (0.31)
SDB Exposure −0.14 1.11∗∗∗ 0.60 0.92 0.12 0.55 0.29 −1.59∗∗∗

(0.20) (0.42) (0.62) (0.69) (0.36) (0.34) (0.54) (0.39)
R2 0.43 0.39 0.34 0.12 0.23 0.03 0.30 0.34
Num. obs. 156 157 157 158 157 157 157 157
F statistic 22.85 19.30 15.49 4.00 9.05 0.84 12.90 15.75
[B] Industry
ICT Exposure 0.26∗∗∗ 0.35∗∗∗ 0.57∗∗∗ 0.85∗∗∗ 0.30∗∗ 0.20 1.00∗∗∗ −0.04

(0.06) (0.13) (0.18) (0.15) (0.12) (0.12) (0.26) (0.12)
SDB Exposure 0.09 0.35∗∗ 0.57∗∗∗ 0.17 0.06 0.28∗∗ −0.49∗∗ 0.25∗

(0.08) (0.16) (0.20) (0.13) (0.13) (0.12) (0.20) (0.14)
R2 0.32 0.28 0.17 0.36 0.21 0.31 0.30 0.18
Num. obs. 158 158 158 158 158 158 158 158
F statistic 14.53 11.60 6.01 16.86 8.29 13.59 13.03 6.46
[C] Services
ICT Exposure 0.14∗∗ 0.26∗∗∗ 0.09 0.61∗∗∗ −0.05 0.25∗∗∗ −0.09 −0.24∗∗∗

(0.05) (0.09) (0.11) (0.10) (0.05) (0.06) (0.15) (0.07)
SDB Exposure 0.17∗∗∗ −0.15 −0.29∗∗ 0.04 0.15∗∗∗ −0.00 0.10 0.31∗∗∗

(0.06) (0.11) (0.12) (0.09) (0.05) (0.05) (0.11) (0.08)
R2 0.23 0.32 0.22 0.48 0.54 0.15 0.58 0.34
Num. obs. 158 158 158 158 158 158 158 158
F statistic 8.95 14.04 8.80 28.51 35.97 5.20 41.36 15.40
Notes: ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses. This table summarizes the estimated coefficients for the OLS
regressions where the outcome variable is the annualized log-change in average wage in Agriculture (Panel A), Industry (Panel B) and Services
(Panel C) over the digital technologies adoption life cycle and phases. The first column is the long-difference estimate for the entire period (1995–
2017). The second and fifth columns correspond to the two entire cycles, while the third and fourth columns correspond to the phases of the Web
1.0 cycle, the sixth and seventh columns correspond to the two phases of the Graphical User Interface and Cloud Computing cycle, and the last
column corresponds to the first phase of the Big Data and AI cycle. Exposure information and communication (ICT), and software-database (SDB),
are calculated as shift-share variables and then standardized. Coefficients can be interpreted as the percentage change in the sectoral average wage
to a one-standard-deviation increase in exposure to the technology during the cycle phase. Control variables include the log of the population in
1980, the change in robot, final demand and trade exposure respectively over the cycle phase, and country fixed effects. Regressions are weighted
by the population in 1980.
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Table C.8: Impact of Digital Technologies on Sectoral Employment Rate. Digital Technologies
Phases

OLS Reg. - Dep. var.: Annualized Δ Employment-to-population × 100
All Web 1.0 GraphUI - Cloud Big Data - AI
(1) (2) (3) (4) (5) (6) (7) (8)

1995-2017 1995-2004 1995-2001 2001-2004 2004-2013 2004-2009 2009-2013 2013-2017
[A] Agriculture
DIG Exposure 0.02∗∗∗ 0.05∗∗∗ 0.04∗∗∗ 0.02 −0.01∗∗ −0.00 −0.00 0.00

(0.01) (0.01) (0.01) (0.01) (0.00) (0.01) (0.00) (0.00)
R2 0.18 0.26 0.11 0.12 0.14 0.04 0.06 0.07
Num. obs. 158 158 158 158 158 158 158 158
F statistic 8.50 13.23 4.75 4.98 6.48 1.71 2.23 2.84
[B] Industry
DIG Exposure −0.00 −0.06∗∗∗ −0.07∗∗∗ −0.08∗∗∗ −0.10∗∗∗ −0.02 −0.11∗∗∗ −0.04∗∗∗

(0.01) (0.01) (0.02) (0.02) (0.02) (0.02) (0.02) (0.01)
R2 0.13 0.55 0.43 0.32 0.39 0.34 0.78 0.52
Num. obs. 158 158 158 158 158 158 158 158
F statistic 5.77 46.83 28.91 18.07 24.41 19.78 138.88 41.32
[C] Services
DIG Exposure 0.03∗∗ 0.08∗∗∗ 0.12∗∗∗ −0.05 −0.00 0.13∗∗∗ −0.18∗∗∗ −0.10∗∗∗

(0.01) (0.02) (0.03) (0.04) (0.01) (0.02) (0.02) (0.02)
R2 0.37 0.36 0.19 0.08 0.62 0.47 0.72 0.38
Num. obs. 158 158 158 158 158 158 158 158
F statistic 22.59 21.98 8.98 3.35 61.53 33.77 97.68 23.71
Notes: ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses. This table summarizes the estimated coefficients for the OLS
regressions where the outcome variable is the annualized change in employment-to-population ratio in Agriculture (Panel A), Industry (Panel B)
and Services (Panel C) over the digital technologies adoption life cycle and phases. The first column is the long-difference estimate for the entire
period (1995–2017). The second and fifth columns correspond to the two entire cycles, while the third and fourth columns correspond to the phases
of the Web 1.0 cycle, the sixth and seventh columns correspond to the two phases of the Graphical User Interface and Cloud Computing cycle, and
the last columncorresponds to the first phase of theBigData andAI cycle. Exposure of digital technologies (ICT and SDBaggregated), are calculated
as shift-share variables and then standardized. Coefficients represent the percentage point change in the sectoral employment-to-population ratio
for a one-standard-deviation increase in technology exposure during the cycle phase. Control variables include the log of the population in 1980,
the change in robot, final demand and trade exposure respectively over the cycle phase, and country fixed effects. Regressions are weighted by the
population in 1980.
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Table C.9: Impact of Digital Technologies on Sectoral Average Wage.

OLS Reg. - Dep. var.: Annualized Δ Average wage (in log) × 100
All Web 1.0 GraphUI - Cloud Big Data - AI
(1) (2) (3) (4) (5) (6) (7) (8)

1995-2017 1995-2004 1995-2001 2001-2004 2004-2013 2004-2009 2009-2013 2013-2017
[A] Agriculture
DIG Exposure 0.47∗∗ 0.36 −0.35 2.47∗∗∗ 0.64∗∗ −0.23 1.18∗∗∗ −1.23∗∗∗

(0.20) (0.43) (0.63) (0.76) (0.25) (0.38) (0.44) (0.31)
R2 0.36 0.36 0.33 0.12 0.25 0.01 0.33 0.32
Num. obs. 156 157 157 158 157 157 157 157
F statistic 20.81 21.55 18.53 5.02 12.82 0.28 18.64 17.70
[B] Industry
DIG Exposure 0.25∗∗∗ 0.34∗∗ 0.74∗∗∗ 0.37∗∗ 0.47∗∗∗ 0.28∗∗ 0.52∗∗∗ 0.14

(0.08) (0.16) (0.20) (0.16) (0.09) (0.13) (0.17) (0.11)
R2 0.25 0.23 0.13 0.23 0.29 0.29 0.28 0.16
Num. obs. 158 158 158 158 158 158 158 158
F statistic 12.42 11.20 5.82 11.40 15.37 15.54 14.71 7.51
[C] Services
DIG Exposure 0.03 −0.21∗∗ −0.54∗∗∗ 0.20∗ 0.05 −0.03 0.16∗ 0.03

(0.06) (0.11) (0.12) (0.11) (0.04) (0.06) (0.09) (0.07)
R2 0.09 0.29 0.29 0.37 0.52 0.04 0.58 0.26
Num. obs. 158 158 158 158 158 158 158 158
F statistic 3.97 15.95 15.48 22.56 40.94 1.54 53.39 13.63
Notes: ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses. This table summarizes the estimated coefficients for the OLS
regressions where the outcome variable is the annualized log-change in average wage in Agriculture (Panel A), Industry (Panel B) and Services
(Panel C) over the digital technologies adoption life cycle and phases. The first column is the long-difference estimate for the entire period (1995–
2017). The second andfifth columns correspond to the two entire cycles, while the third and fourth columns correspond to the phases of theWeb 1.0
cycle, the sixth and seventh columns correspond to the two phases of the Graphical User Interface and Cloud Computing cycle, and the last column
corresponds to the first phase of the Big Data and AI cycle. Exposure of digital technologies (ICT and SDB aggregated), are calculated as shift-share
variables and then standardized. Coefficients can be interpreted as the percentage change in the sectoral averagewage to a one-standard-deviation
increase in exposure to the technology during the cycle phase. Control variables include the log of the population in 1980, the change in robot, final
demand and trade exposure respectively over the cycle phase, and country fixed effects. Regressions are weighted by the population in 1980.

C.2 First Stage IV Regressions
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Table C.10: First-Stage Regression Robot Breakthroughs (Robots)

First Stage IV Regression – Dep. var.: ROB Exposure
All Robotics Intelligent Robots

1995-2017 1995-2013 1995-2002 2002-2013 2013-2017
Intercept −1.30∗∗∗ −1.08∗∗∗ −0.55∗∗∗ −0.53∗∗∗ −0.22∗∗

(0.31) (0.23) (0.10) (0.14) (0.09)
ROB Exposure (US) 1.71∗∗∗ 1.92∗∗∗ 3.08∗∗∗ 1.38∗∗∗ 1.16∗∗∗

(0.13) (0.14) (0.19) (0.13) (0.13)
R2 0.52 0.55 0.62 0.43 0.33
Num. obs. 158 158 158 158 158
F statistic 165.70 190.90 257.96 117.07 75.34
Notes: ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses. This table summarizes the estimated coefficients
for the first stage of the IV regressions for robots (ROB).The dependent variables represent the robot exposure of European regions
in shift-share. Robot Exposure (US) is the instrument variable also constructed as a shift-share with the change in US stock per
thousand workers. Regressions are weighted by the population in 1980.

Table C.11: First-Stage Regression Digital Technologies Breakthroughs (ICT)

First Stage IV Regression – Dep. var.: ICT Exposure
All Web 1.0 GraphUI - Cloud Big Data - AI

1995-2017 1995-2004 1995-2001 2001-2004 2004-2013 2004-2009 2009-2013 2013-2017
Intercept −0.25 0.27∗∗ 0.23∗ 0.03 −0.21 0.04 −0.21 −0.22∗∗

(0.27) (0.13) (0.12) (0.03) (0.17) (0.11) (0.16) (0.10)
ICT Exposure (US) 0.21∗∗∗ 0.26∗∗∗ 0.29∗∗∗ 0.19∗∗∗ 0.18∗∗∗ 0.20∗∗∗ 0.15∗∗ 0.18∗∗∗

(0.03) (0.06) (0.08) (0.04) (0.04) (0.06) (0.07) (0.04)
R2 0.24 0.10 0.07 0.11 0.11 0.08 0.03 0.14
Num. obs. 158 158 158 158 158 158 158 158
F statistic 49.57 17.31 12.04 18.59 19.85 13.20 4.52 25.51
Notes: ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses. This table summarizes the estimated coefficients for the first stage of
the IV regressions for information and communication technology (ICT). The dependent variables represent the ICT exposure of European regions in
shift-share. ICT Exposure (US) is the instrument variable also constructed as a shift-share with the change in US stock per thousand workers. Regressions
are weighted by the population in 1980.
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Table C.12: First-Stage Regression Digital Technologies Breakthroughs (Software & Database)

First Stage IV Regression – Dep. var.: SDB Exposure
All Web 1.0 GraphUI - Cloud Big Data - AI

1995-2017 1995-2004 1995-2001 2001-2004 2004-2013 2004-2009 2009-2013 2013-2017
Intercept −0.39 0.32∗∗ 0.01 0.23∗∗∗ −0.51∗∗ −0.24∗ −0.23∗ −0.16

(0.45) (0.16) (0.14) (0.04) (0.25) (0.12) (0.14) (0.11)
SDB Exposure (US) 0.55∗∗∗ 0.43∗∗∗ 0.55∗∗∗ 0.23∗∗∗ 0.58∗∗∗ 0.67∗∗∗ 0.48∗∗∗ 0.60∗∗∗

(0.07) (0.08) (0.10) (0.08) (0.09) (0.09) (0.10) (0.07)
R2 0.28 0.16 0.17 0.05 0.21 0.25 0.13 0.29
Num. obs. 158 158 158 158 158 158 158 158
F statistic 59.46 29.10 32.57 8.27 41.04 51.74 24.33 64.75
Notes: ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses. This table summarizes the estimated coefficients for the first stage of the
IV regressions for software anddatabase (SDB).Thedependent variables represent the SDBexposure of European regions in shift-share. SDBExposure (US)
is the instrument variable also constructed as a shift-share with the change in US stock per thousand workers. Regressions are weighted by the population
in 1980.
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C.3 Second Stage (IV) Regressions

Table C.13: Impact of Robots during Robot Cycles

IV Reg. - Dep. var.: Annualized Δ in Outcome Variable
All Robotics Intelligent Robots
(1) (2) (3) (4) (5)

1995-2017 1995-2013 1995-2002 2002-2013 2013-2017
[A] Δ Employment-to-population× 100

ROB Exposure 0.11∗∗∗ 0.12∗∗∗ 0.22∗∗∗ 0.06 0.07∗∗

(0.03) (0.04) (0.07) (0.05) (0.03)
R2 0.61 0.60 0.70 0.79 0.82
Num. obs. 158 158 158 158 158
F statistic 13.00 12.38 19.38 30.53 36.31
[B] Δ Average wage (in log)× 100

ROB Exposure 0.00 −0.11 −0.12 0.11 0.40∗∗∗

(0.12) (0.14) (0.25) (0.11) (0.08)
R2 0.66 0.70 0.63 0.72 0.65
Num. obs. 158 158 158 158 158
F statistic 15.71 19.12 13.94 21.66 15.02
Notes: ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses. This table summarizes the estimated co-
efficients for the IV regressions where the outcome variable is the annualized change in employment-to-population ratio
(Panel A) and log-change in average wage (Panel B) over the robot technology adoption life cycle and phases. The first col-
umn is the long-difference estimate for the entire period (1995–2017). The second column corresponds to the effect of the
entire Robotics cycle, while the third and fourth columns correspond to the phases of the Robotics cycle. The last column
shows the coefficient for the first phase of the Intelligent Robots cycle. Exposure to robots (ROB) is calculated as shift-share
variables and then standardized. Panel A coefficients represent thepercentagepoint change in the regional employment-to-
population ratio for a one-standard-deviation increase in technology exposure during the cycle phase. Panel B coefficients
indicate the corresponding percentage change in the regional average wage. Control variables include the log of the popu-
lation in 1980, the change in ICT and SDB, final demand and trade exposure respectively over the cycle phase, and country
fixed effects. Regressions are weighted by the population in 1980.
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Table C.14: Impact of Digital Technologies during Digital Cycles

IV Reg. - Dep. var.: Annualized Δ in Outcome Variable
All Web 1.0 GraphUI - Cloud Big Data - AI
(1) (2) (3) (4) (5) (6) (7) (8)

1995-2017 1995-2004 1995-2001 2001-2004 2004-2013 2004-2009 2009-2013 2013-2017
[A] Δ Employment-to-population× 100

DIG Exposure 0.00 −0.09∗∗∗ 0.18∗∗∗ −0.13∗ −0.02 −0.01 0.01 0.00
(0.01) (0.03) (0.06) (0.07) (0.03) (0.04) (0.03) (0.03)

R2 0.59 0.77 0.59 0.63 0.87 0.66 0.91 0.82
Num. obs. 158 158 158 158 158 158 158 158
F statistic 12.57 28.89 12.68 14.89 59.83 17.20 89.58 38.85
[B] Δ Average wage (in log)× 100

DIG Exposure −0.00 0.24∗∗ −0.18 0.43∗∗∗ 0.08 0.20∗∗ −0.01 0.36∗∗∗

(0.05) (0.11) (0.18) (0.15) (0.05) (0.10) (0.07) (0.07)
R2 0.63 0.71 0.46 0.81 0.75 0.67 0.89 0.65
Num. obs. 158 158 158 158 158 158 158 158
F statistic 14.80 21.63 7.42 38.48 26.74 17.98 73.38 16.02
Notes: ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses. This table summarizes the estimated coefficients for the OLS
regressions where the outcome variable is the annualized change in employment-to-population ratio (Panel A) and log-change in average wage
(Panel B) over the digital technologies adoption life cycle and phases. The first column is the long-difference estimate for the entire period (1995–
2017). The second andfifth columns correspond to the two entire cycles, while the third and fourth columns correspond to the phases of theWeb 1.0
cycle, the sixth and seventh columns correspond to the two phases of the Graphical User Interface and Cloud Computing cycle, and the last column
corresponds to the first phase of the Big Data and AI cycle. Exposure of digital technologies (ICT and SDB aggregated), are calculated as shift-share
variables and then standardized. Panel A coefficients represent the percentage point change in the regional employment-to-population ratio for a
one-standard-deviation increase in technology exposure during the cycle phase. Panel B coefficients indicate the correspondingpercentage change
in the regional average wage. Control variables include the log of the population in 1980, the change in robot, final demand and trade exposure
respectively over the cycle phase, and country fixed effects. Regressions are weighted by the population in 1980.
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Table C.15: Impact of ICT and SDB during Digital Technology Cycles

IV Reg. - Dep. var.: Annualized Δ in Outcome Variable
All Web 1.0 GraphUI - Cloud Big Data - AI
(1) (2) (3) (4) (5) (6) (7) (8)

1995-2017 1995-2004 1995-2001 2001-2004 2004-2013 2004-2009 2009-2013 2013-2017
[A] Δ Employment-to-population× 100

ICT Exposure 0.05∗∗∗ 0.22∗∗∗ 0.62∗∗∗ −0.71∗∗∗ −0.04 −0.01 −0.10∗∗∗ −0.00
(0.02) (0.07) (0.12) (0.27) (0.03) (0.05) (0.04) (0.03)

SDB Exposure −0.06∗∗∗ −0.29∗∗∗ −0.37∗∗∗ 0.38∗∗ 0.03 −0.00 0.10∗∗∗ 0.00
(0.02) (0.06) (0.11) (0.19) (0.04) (0.05) (0.03) (0.03)

R2 0.61 0.79 0.64 0.64 0.87 0.66 0.92 0.82
Num. obs. 158 158 158 158 158 158 158 158
F statistic 13.00 30.82 14.92 14.85 56.59 16.07 90.92 36.31
[B] Δ Average wage (in log)× 100

ICT Exposure −0.23∗∗∗ −0.78∗∗∗ −1.43∗∗∗ 0.78 0.03 0.06 −0.03 0.26∗∗∗

(0.07) (0.25) (0.38) (0.58) (0.06) (0.14) (0.09) (0.09)
SDB Exposure 0.26∗∗∗ 0.98∗∗∗ 1.09∗∗∗ −0.16 0.05 0.14 0.02 0.12

(0.08) (0.24) (0.34) (0.41) (0.07) (0.12) (0.08) (0.07)
R2 0.66 0.74 0.50 0.82 0.75 0.67 0.89 0.65
Num. obs. 158 158 158 158 158 158 158 158
F statistic 15.71 22.86 8.31 36.29 24.99 16.82 68.66 15.02
Notes: ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses. This table summarizes the estimated coefficients for the IV
regressions where the outcome variable is the annualized change in employment-to-population ratio (Panel A) and log-change in average wage
(Panel B) over the digital technologies adoption life cycle and phases. The first column is the long-difference estimate for the entire period (1995–
2017). The second and fifth columns correspond to the two entire cycles, while the third and fourth columns correspond to the phases of the
Web 1.0 cycle, the sixth and seventh columns correspond to the two phases of the Graphical User Interface and Cloud Computing cycle, and the
last column corresponds to the first phase of the Big Data and AI cycle. Exposure information and communication (ICT), and software-database
(SDB), are calculated as shift-share variables and then standardized. Panel A coefficients represent the percentage point change in the regional
employment-to-population ratio for a one-standard-deviation increase in technology exposure during the cycle phase. Panel B coefficients indicate
the corresponding percentage change in the regional average wage. Control variables include the log of the population in 1980, the change in robot,
final demand and trade exposure respectively over the cycle phase, and country fixed effects. Regressions are weighted by the population in 1980.
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Table C.16: Impact of Robots on Sectoral Employment Rate. Robot Phases

IV Reg. - Dep. var.: Annualized Δ Employment-to-population × 100
All Robotics Intelligent Robots
(1) (2) (3) (4) (5)

1995-2017 1995-2013 1995-2002 2002-2013 2013-2017
[A] Agriculture
ROB Exposure 0.01 0.02 0.02 0.00 −0.01∗

(0.01) (0.01) (0.03) (0.01) (0.01)
R2 0.50 0.54 0.34 0.53 0.36
Num. obs. 158 158 158 158 158
F statistic 8.32 9.52 4.23 9.36 4.73
[B] Industry
ROB Exposure 0.01 0.02 −0.00 0.02 −0.01

(0.01) (0.02) (0.03) (0.02) (0.01)
R2 0.57 0.64 0.85 0.87 0.72
Num. obs. 158 158 158 158 158
F statistic 11.04 14.95 46.09 56.31 21.04
[C] Services
ROB Exposure 0.09∗∗∗ 0.08∗∗ 0.20∗∗∗ 0.04 0.09∗∗∗

(0.03) (0.03) (0.06) (0.04) (0.03)
R2 0.67 0.66 0.52 0.68 0.72
Num. obs. 158 158 158 158 158
F statistic 16.52 16.22 8.93 17.28 21.03
Notes: ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses. This table summarizes the esti-
mated coefficients for the IV regressions where the outcome variable is the annualized change in employment-to-
population ratio in Agriculture (Panel A), Industry (Panel B) and Services (Panel C) over the robot technology adop-
tion life cycle and phases. The first column is the long-difference estimate for the entire period (1995–2017). The sec-
ond column corresponds to the effect of the entire Robotics cycle, while the third and fourth columns correspond to
the phases of the Robotics cycle. The last column shows the coefficient for the first phase of the Intelligent Robots cy-
cle. Exposure to robots (ROB) is calculated as shift-share variables and then standardized. Coefficients represent the
percentage point change in the sectoral employment-to-population ratio for a one-standard-deviation increase in
technology exposure during the cycle phase. Control variables include the log of the population in 1980, the change
in ICT and SDB, final demand and trade exposure respectively over the cycle phase, and country fixed effects. Re-
gressions are weighted by the population in 1980.

Impact of Robots and Digital Technologies in Regional Labor Markets by Sector – IV
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Table C.17: Impact of Robots on Sectoral Average Wage.

IV Reg. - Dep. var.: Annualized Δ Average wage (in log) × 100
All Robotics Intelligent Robots
(1) (2) (3) (4) (5)

1995-2017 1995-2013 1995-2002 2002-2013 2013-2017
[A] Agriculture
ROB Exposure 0.04 0.13 −1.01 0.23 0.53

(0.42) (0.55) (1.31) (0.68) (0.44)
R2 0.66 0.70 0.52 0.48 0.66
Num. obs. 156 156 157 157 157
F statistic 15.77 18.94 8.73 7.64 16.18
[B] Industry
ROB Exposure 0.10 −0.01 −0.29 0.38∗ 0.23

(0.15) (0.19) (0.38) (0.21) (0.14)
R2 0.66 0.69 0.58 0.70 0.68
Num. obs. 158 158 158 158 158
F statistic 16.03 18.57 11.22 19.44 17.89
[C] Services
ROB Exposure −0.01 −0.14 −0.07 0.11 0.33∗∗∗

(0.10) (0.12) (0.22) (0.11) (0.09)
R2 0.72 0.73 0.69 0.69 0.69
Num. obs. 158 158 158 158 158
F statistic 21.67 21.92 18.34 18.32 18.30
Notes: ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses. This table summarizes
the estimated coefficients for the IV regressions where the outcome variable is the annualized log-change in
average wage in Agriculture (Panel A), Industry (Panel B) and Services (Panel C) over the robot technology
adoption life cycle and phases. The first column is the long-difference estimate for the entire period (1995–
2017). The second column corresponds to the effect of the entire Robotics cycle, while the third and fourth
columns correspond to the phases of the Robotics cycle. The last column shows the coefficient for the first
phase of the Intelligent Robots cycle. Exposure to robots (ROB) is calculated as shift-share variables and then
standardized. Coefficients can be interpreted as the percentage change in the sectoral average wage to a one-
standard-deviation increase in exposure to the technology during the cycle phase. Control variables include
the log of the population in 1980, the change in ICT and SDB, final demand and trade exposure respectively
over the cycle phase, and country fixed effects. Regressions are weighted by the population in 1980.
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Table C.18: Impact of Digital Technologies on Sectoral Employment Rate. Digital Technologies
Phases

IV Reg. - Dep. var.: Annualized Δ Employment-to-population × 100
All Web 1.0 GraphUI - Cloud Big Data - AI
(1) (2) (3) (4) (5) (6) (7) (8)

1995-2017 1995-2004 1995-2001 2001-2004 2004-2013 2004-2009 2009-2013 2013-2017
[A] Agriculture
DIG Exposure 0.03∗∗∗ 0.03∗∗ 0.06∗∗∗ −0.04∗∗ 0.01 −0.00 −0.01 −0.01∗

(0.01) (0.01) (0.02) (0.02) (0.00) (0.01) (0.01) (0.01)
R2 0.47 0.46 0.29 0.46 0.47 0.40 0.28 0.36
Num. obs. 158 158 158 158 158 158 158 158
F statistic 7.78 7.37 3.54 7.65 7.87 5.95 3.41 5.05
[B] Industry
DIG Exposure −0.02∗∗∗ −0.04∗∗∗ −0.02 −0.07∗∗ −0.01 −0.04∗∗ −0.02∗ −0.00

(0.01) (0.01) (0.02) (0.03) (0.01) (0.02) (0.01) (0.01)
R2 0.57 0.88 0.83 0.67 0.92 0.82 0.93 0.71
Num. obs. 158 158 158 158 158 158 158 158
F statistic 11.77 64.96 42.85 17.99 95.67 39.85 120.16 22.06
[C] Services
DIG Exposure −0.00 −0.08∗∗∗ 0.14∗∗∗ −0.02 −0.02 0.04 0.03 0.02

(0.01) (0.02) (0.05) (0.06) (0.02) (0.03) (0.03) (0.02)
R2 0.66 0.58 0.38 0.58 0.74 0.67 0.81 0.72
Num. obs. 158 158 158 158 158 158 158 158
F statistic 17.00 11.99 5.36 12.30 25.15 17.74 36.51 22.43
Notes: ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses. This table summarizes the estimated coefficients for the IV
regressions where the outcome variable is the annualized change in employment-to-population ratio in Agriculture (Panel A), Industry (Panel B)
and Services (Panel C) over the digital technologies adoption life cycle and phases. The first column is the long-difference estimate for the entire
period (1995–2017). The second and fifth columns correspond to the two entire cycles, while the third and fourth columns correspond to the phases
of the Web 1.0 cycle, the sixth and seventh columns correspond to the two phases of the Graphical User Interface and Cloud Computing cycle, and
the last columncorresponds to the first phase of theBigData andAI cycle. Exposure of digital technologies (ICT and SDBaggregated), are calculated
as shift-share variables and then standardized. Coefficients represent the percentage point change in the sectoral employment-to-population ratio
for a one-standard-deviation increase in technology exposure during the cycle phase. Control variables include the log of the population in 1980,
the change in robot, final demand and trade exposure respectively over the cycle phase, and country fixed effects. Regressions are weighted by the
population in 1980.
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Table C.19: Impact of Digital Technologies on Sectoral Average Wage.

IV Reg. - Dep. var.: Annualized Δ Average wage (in log) × 100
All Web 1.0 GraphUI - Cloud Big Data - AI
(1) (2) (3) (4) (5) (6) (7) (8)

1995-2017 1995-2004 1995-2001 2001-2004 2004-2013 2004-2009 2009-2013 2013-2017
[A] Agriculture
DIG Exposure 0.23 0.26 −2.28∗∗ 0.48 0.26 −0.45 0.07 −0.25

(0.18) (0.49) (0.94) (0.98) (0.30) (0.61) (0.40) (0.38)
R2 0.66 0.60 0.49 0.68 0.67 0.39 0.72 0.66
Num. obs. 156 157 157 158 157 157 157 157
F statistic 16.83 12.86 8.46 18.58 17.43 5.69 22.96 17.27
[B] Industry
DIG Exposure 0.07 0.31∗∗ −0.10 0.50∗∗ 0.06 0.39∗ −0.16 0.01

(0.07) (0.16) (0.26) (0.23) (0.11) (0.21) (0.14) (0.12)
R2 0.64 0.64 0.51 0.66 0.66 0.58 0.76 0.68
Num. obs. 158 158 158 158 158 158 158 158
F statistic 15.85 15.34 9.15 17.16 17.05 12.14 27.40 18.87
[C] Services
DIG Exposure 0.05 0.29∗∗∗ −0.02 0.32∗∗ 0.11∗∗ 0.24∗∗∗ −0.00 0.38∗∗∗

(0.05) (0.10) (0.16) (0.14) (0.05) (0.09) (0.08) (0.08)
R2 0.71 0.72 0.57 0.77 0.72 0.49 0.85 0.69
Num. obs. 158 158 158 158 158 158 158 158
F statistic 21.13 23.07 11.58 29.36 22.54 8.51 50.67 19.20
Notes: ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses. This table summarizes the estimated coefficients for the IV
regressions where the outcome variable is the annualized log-change in average wage in Agriculture (Panel A), Industry (Panel B) and Services
(Panel C) over the digital technologies adoption life cycle and phases. The first column is the long-difference estimate for the entire period (1995–
2017). The second andfifth columns correspond to the two entire cycles, while the third and fourth columns correspond to the phases of theWeb 1.0
cycle, the sixth and seventh columns correspond to the two phases of the Graphical User Interface and Cloud Computing cycle, and the last column
corresponds to the first phase of the Big Data and AI cycle. Exposure of digital technologies (ICT and SDB aggregated), are calculated as shift-share
variables and then standardized. Coefficients can be interpreted as the percentage change in the sectoral averagewage to a one-standard-deviation
increase in exposure to the technology during the cycle phase. Control variables include the log of the population in 1980, the change in robot, final
demand and trade exposure respectively over the cycle phase, and country fixed effects. Regressions are weighted by the population in 1980.
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Table C.20: Impact of Digital Technologies on Sectoral Employment Rate. ICT Phases

IV Reg. - Dep. var.: Annualized Δ Employment-to-population × 100
All Web 1.0 GraphUI - Cloud Big Data - AI
(1) (2) (3) (4) (5) (6) (7) (8)

1995-2017 1995-2004 1995-2001 2001-2004 2004-2013 2004-2009 2009-2013 2013-2017
[A] Agriculture
ICT Exposure 0.03∗∗∗ 0.09∗∗∗ 0.07 0.09 0.01∗∗∗ 0.01 −0.00 −0.01

(0.01) (0.03) (0.04) (0.07) (0.01) (0.01) (0.01) (0.01)
SDB Exposure −0.01 −0.06∗∗ −0.00 −0.10∗∗ −0.01 −0.01 −0.01 −0.00

(0.01) (0.03) (0.04) (0.05) (0.01) (0.01) (0.01) (0.01)
R2 0.50 0.49 0.29 0.47 0.49 0.41 0.28 0.36
Num. obs. 158 158 158 158 158 158 158 158
F statistic 8.32 7.90 3.38 7.42 7.90 5.67 3.20 4.73
[B] Industry
ICT Exposure −0.01 −0.02 −0.02 0.01 0.01 −0.00 −0.01 −0.02

(0.01) (0.03) (0.04) (0.12) (0.01) (0.03) (0.01) (0.01)
SDB Exposure −0.02∗ −0.02 −0.01 −0.07 −0.02 −0.04∗ −0.01 0.01

(0.01) (0.03) (0.04) (0.08) (0.02) (0.02) (0.01) (0.01)
R2 0.57 0.88 0.83 0.67 0.92 0.82 0.93 0.72
Num. obs. 158 158 158 158 158 158 158 158
F statistic 11.04 60.71 40.05 16.84 90.47 37.43 112.29 21.04
[C] Services
ICT Exposure 0.03∗ 0.15∗∗ 0.57∗∗∗ −0.81∗∗∗ −0.07∗∗∗ −0.02 −0.09∗∗∗ 0.02

(0.02) (0.06) (0.10) (0.22) (0.02) (0.04) (0.03) (0.03)
SDB Exposure −0.04∗ −0.22∗∗∗ −0.37∗∗∗ 0.55∗∗∗ 0.06∗∗ 0.05 0.11∗∗∗ −0.01

(0.02) (0.06) (0.09) (0.15) (0.03) (0.03) (0.03) (0.02)
R2 0.67 0.61 0.48 0.62 0.75 0.67 0.83 0.72
Num. obs. 158 158 158 158 158 158 158 158
F statistic 16.52 12.62 7.57 13.42 25.29 16.76 39.09 21.03
Notes: ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses. This table summarizes the estimated coefficients for the IV
regressions where the outcome variable is the annualized change in employment-to-population ratio in Agriculture (Panel A), Industry (Panel B)
and Services (Panel C) over the digital technologies adoption life cycle and phases. The first column is the long-difference estimate for the entire
period (1995–2017). The second and fifth columns correspond to the two entire cycles, while the third and fourth columns correspond to the phases
of the Web 1.0 cycle, the sixth and seventh columns correspond to the two phases of the Graphical User Interface and Cloud Computing cycle, and
the last column corresponds to the first phase of the BigData and AI cycle. Exposure information and communication (ICT), and software-database
(SDB), are calculated as shift-share variables and then standardized. Coefficients represent thepercentagepoint change in the sectoral employment-
to-population ratio for a one-standard-deviation increase in technology exposure during the cycle phase. Control variables include the log of the
population in 1980, the change in robot, final demand and trade exposure respectively over the cycle phase, and country fixed effects. Regressions
are weighted by the population in 1980.
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Table C.21: Impact of ICT and SDB on Sectoral Average Wage.

IV Reg. - Dep. var.: Annualized Δ Average wage (in log) × 100
All Web 1.0 GraphUI - Cloud Big Data - AI
(1) (2) (3) (4) (5) (6) (7) (8)

1995-2017 1995-2004 1995-2001 2001-2004 2004-2013 2004-2009 2009-2013 2013-2017
[A] Agriculture
ICT Exposure 0.01 1.37 1.14 −5.22 0.09 −0.14 0.10 −0.33

(0.25) (1.21) (2.09) (3.79) (0.36) (0.88) (0.48) (0.45)
SDB Exposure 0.25 −1.04 −3.20∗ 4.06 0.19 −0.30 −0.01 0.06

(0.29) (1.16) (1.87) (2.69) (0.42) (0.77) (0.42) (0.38)
R2 0.66 0.60 0.50 0.68 0.67 0.39 0.72 0.66
Num. obs. 156 157 157 158 157 157 157 157
F statistic 15.77 12.18 8.04 17.74 16.29 5.32 21.46 16.18
[B] Industry
ICT Exposure −0.19∗∗ −0.42 −1.05∗ 2.81∗∗∗ 0.03 0.38 −0.26 −0.14

(0.09) (0.39) (0.58) (0.85) (0.13) (0.30) (0.16) (0.14)
SDB Exposure 0.30∗∗∗ 0.71∗ 0.83 −1.52∗∗ 0.03 0.05 0.07 0.13

(0.10) (0.37) (0.52) (0.61) (0.15) (0.26) (0.14) (0.12)
R2 0.66 0.64 0.52 0.68 0.66 0.58 0.76 0.68
Num. obs. 158 158 158 158 158 158 158 158
F statistic 16.03 14.69 8.93 17.65 15.93 11.40 25.94 17.89
[C] Services
ICT Exposure −0.15∗∗ −0.68∗∗∗ −1.33∗∗∗ 0.49 0.04 0.06 0.02 0.35∗∗∗

(0.06) (0.23) (0.34) (0.55) (0.06) (0.13) (0.09) (0.09)
SDB Exposure 0.23∗∗∗ 0.93∗∗∗ 1.16∗∗∗ −0.05 0.07 0.18 −0.02 0.06

(0.07) (0.22) (0.31) (0.39) (0.07) (0.12) (0.08) (0.08)
R2 0.72 0.75 0.61 0.77 0.72 0.49 0.85 0.69
Num. obs. 158 158 158 158 158 158 158 158
F statistic 21.67 24.35 12.97 27.54 21.08 7.99 47.37 18.30
Notes: ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses. This table summarizes the estimated coefficients for the IV
regressions where the outcome variable is the annualized log-change in average wage in Agriculture (Panel A), Industry (Panel B) and Services
(Panel C) over the digital technologies adoption life cycle and phases. The first column is the long-difference estimate for the entire period (1995–
2017). The second and fifth columns correspond to the two entire cycles, while the third and fourth columns correspond to the phases of the Web
1.0 cycle, the sixth and seventh columns correspond to the two phases of the Graphical User Interface and Cloud Computing cycle, and the last
column corresponds to the first phase of the Big Data and AI cycle. Exposure information and communication (ICT), and software-database (SDB),
are calculated as shift-share variables and then standardized. Coefficients can be interpreted as the percentage change in the sectoral average wage
to a one-standard-deviation increase in exposure to the technology during the cycle phase. Control variables include the log of the population in
1980, the change in robot, final demand and trade exposure respectively over the cycle phase, and country fixed effects. Regressions are weighted
by the population in 1980.
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Summary of Results
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Table C.22: Summary of the Net Employment Effects of Robots and Digital Technologies at the Regional Level

[A] Robots
All Robotics Intelligent Robots

1995-2017 1995-2013 1995-2002 2002-2013 2013-2017
Total Reinstate Reinstate Reinstate Reinstate 𝐻
Agriculture
Industry
Services Reinstate Reinstate Reinstate Reinstate 𝐻
[B]Digital Technologies

All Web 1.0 GraphUI - Cloud Big Data - AI
1995-2017 1995-2004 1995-2001 2001-2004 2004-2013 2004-2009 2009-2013 2013-2017

Total Displace 𝐿 Reinstate Sub 𝐿 with 𝐻 Sub. 𝐿 with 𝐻
Agriculture Reinstate Reinstate 𝐿 Displace
Industry Displace Displace 𝐿 Displace 𝐿 Displace
Services Displace 𝐿 Reinstate Sub. 𝐿 with 𝐻 Sub. 𝐿 with 𝐻 Sub. 𝐿 with 𝐻 Sub. 𝐿 with 𝐻
[C] Information and Communication Technology (ICT)

All Web 1.0 GraphUI - Cloud Big Data - AI
1995-2017 1995-2004 1995-2001 2001-2004 2004-2013 2004-2009 2009-2013 2013-2017

Total Reinstate 𝐿 Reinstate 𝐿 Reinstate 𝐿 Displace Displace Sub 𝐿 with 𝐻
Agriculture Reinstate Reinstate Reinstate
Industry Sub. 𝐻 with 𝐿 Sub. 𝐻 with 𝐿 Sub. 𝐿 with 𝐻
Services Reinstate 𝐿 Reinstate 𝐿 Reinstate 𝐿 Displace 𝐿 Displace 𝐿 Displace 𝐿 Sub. 𝐿 with 𝐻
[D] Software and Database (SDB)

All Web 1.0 GraphUI - Cloud Big Data - AI
1995-2017 1995-2004 1995-2001 2001-2004 2004-2013 2004-2009 2009-2013 2013-2017

Total Displace 𝐿 Displace 𝐿 Displace 𝐿 Reinstate Reinstate
Agriculture Displace Displace
Industry Sub. 𝐿 with 𝐻 Sub. 𝐻 with 𝐿
Services Sub. 𝐿 with 𝐻 Displace 𝐿 Displace 𝐿 Reinstate Reinstate Reinstate
Notes: This Tables summarizes the IV coefficient results displayed in Tables C.13 to C.19.
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Figure C.1: Heterogeneity in 𝛽𝑘 for Robots

Notes: This figure plots the relationship between each instrument’s and the Rotemberg weights for robots. Each point corresponds to a sepa-
rate instrument’s estimate (industry share). The y-axis shows the estimated 𝛽𝑘 for each instrument, while the x-axis displays the Rotemberg
weights 𝛼𝑘 estimated by applying the methodology developed by Goldsmith-Pinkham et al. (2020). The scatter points are weighted by the
Rotemberg weights while the colors reflect their sign (positive and negative). The horizontal dashed line represents the value of the overall
IV 𝛽 displayed in the first column of Table C.13.

C.4 Validity and Robustness Checks

RotembergWeights

Table C.23: Summary of Rotemberg weights – ROB.

nace g alpha beta share
DE_B-E 16.093 1.229 0.116 63.950
FR_B-E 4.246 -0.199 0.097 10.364
BE_B-E 5.551 -0.133 0.367 6.923
NL_B-E 8.830 0.122 0.206 6.340
IT_B-E 6.789 -0.090 0.883 4.688

Notes: This table shows the top five country-industries (first column) according to the
Rotemberg weights after implementing the decomposition of the IV estimator proposed
by Goldsmith-Pinkham et al. (2020). The second column (𝑔𝑘) represents the country-
industry change in robot stock while the third column (alpha 𝛼𝑘) reports the weights, the
fourth column (beta) displays the just-identified coefficient estimates (𝛽𝑘), and the fifth
column indicates the proportion that the absolute value of each weight 𝛼𝑘 contributes
to the total sum of absolute values across all 𝛼𝑘. Control variables include the log of the
population in 1980, the change in ICT and SDB, final demand and trade exposure respec-
tively over the period that goes from 1995-2017, and country fixed effects. Regressions are
weighted by the population in 1980.
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Table C.24: Summary of Rotemberg weights – ICT.

nace g alpha beta share
ES_O-U 3.377 1.078 -0.484 13.609
ES_G-J 1.868 0.674 -0.512 8.508
FR_K-N 3.854 -0.608 0.251 7.679
NL_G-J 3.780 0.545 -0.715 6.875
FR_G-J 1.573 -0.531 0.250 6.696

Notes: This table shows the top five country-industries (first column) according to the
Rotemberg weights after implementing the decomposition of the IV estimator proposed
by Goldsmith-Pinkham et al. (2020). The second column (𝑔𝑘) represents the country-
industry change in ICT stock in sector 𝑘 while the third column (alpha 𝛼𝑘) reports the
weights, the third column (beta) displays the just-identified coefficient estimates (𝛽𝑘),
and the fifth column indicates the proportion that the absolute value of each weight 𝛼𝑘
contributes to the total sum of absolute values across all 𝛼𝑘. Control variables include
the log of the population in 1980, the change in SDB and robots, final demand and trade
exposure respectively over the period that goes from 1995-2017, and country fixed effects.
Regressions are weighted by the population in 1980.

Figure C.2: Heterogeneity in 𝛽𝑘 for information and communication technologies

Notes: This figure plots the relationship between each instrument’s and the Rotemberg weights for information and communication tech-
nologies, where each point corresponds to a separate instrument’s estimate (industry share). The y-axis shows the estimated 𝛽𝑘 for each
instrument, while the x-axis displays the Rotemberg weights 𝛼𝑘 estimated by applying the methodology developed by Goldsmith-Pinkham
et al. (2020). The scatter points are weighted by the Rotemberg weights while the colors reflect their sign (positive and negative). The hori-
zontal dashed line represents the value of the overall IV 𝛽 displayed in the first column of Table C.15.
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Table C.25: Summary of Rotemberg weights – SDB.

nace g alpha beta share
FR_K-N 16.104 0.191 0.150 17.901
FR_G-J 7.337 0.184 0.152 17.264
ES_G-J 7.879 0.106 0.191 9.910
ES_K-N 13.479 0.056 0.207 5.289
FR_B-E 2.225 0.055 0.151 5.173

Notes: This table shows the top five country-industries (first column) according to the
Rotemberg weights after implementing the decomposition of the IV estimator proposed
by Goldsmith-Pinkham et al. (2020). The second column (𝑔𝑘) represents the country-
industry change in SDB stock while the third column (alpha 𝛼𝑘) reports the weights, the
fourth column displays the just-identified coefficient estimates (𝛽𝑘), and the fifth col-
umn indicates the proportion that the absolute value of each weight 𝛼𝑘 contributes to
the total sum of absolute values across all 𝛼𝑘. Control variables include the log of the
population in 1980, the change in ICT and robots, final demand and trade exposure re-
spectively over the period that goes from 1995-2017, and country fixed effects. Regres-
sions are weighted by the population in 1980.
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Figure C.3: Heterogeneity in 𝛽𝑘 for software and database

Notes: This figure plots the relationship between each instrument’s and the Rotemberg weights for software and database. Each point corre-
sponds to a separate instrument’s estimate (industry share). The y-axis shows the estimated 𝛽𝑘 for each instrument, while the x-axis displays
the Rotemberg weights 𝛼𝑘 estimated by applying the methodology developed by Goldsmith-Pinkham et al. (2020). The scatter points are
weighted by the Rotembergweights while the colors reflect their sign (positive and negative). The horizontal dashed line represents the value
of the overall IV 𝛽 displayed in the first column of Table C.15.

Further robustness checks
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Table C.26: Impact of Robots during Robot Phases Excluding Germany

IV Reg. - Dep. var.: Annualized Δ in Outcome Variable
All Robotics Intelligent Robots
(1) (2) (3) (4) (5)

1995-2017 1995-2013 1995-2002 2002-2013 2013-2017
[A] Δ Employment-to-population× 100

ROB Exposure 0.11∗∗∗ 0.13∗∗∗ 0.17∗∗ 0.07 0.07∗∗

(0.04) (0.04) (0.08) (0.06) (0.03)
R2 0.53 0.45 0.72 0.58 0.85
Num. obs. 128 128 128 128 128
F statistic 7.81 5.60 18.05 9.55 38.23
[B] Δ Average wage (in log)× 100

ROB Exposure −0.08 −0.23 −0.10 0.01 0.39∗∗∗

(0.13) (0.15) (0.28) (0.11) (0.09)
R2 0.68 0.72 0.63 0.78 0.51
Num. obs. 128 128 128 128 128
F statistic 15.08 18.27 11.78 24.24 7.11
Notes: ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses. This table summarizes the estimated co-
efficients for the IV regressions where the outcome variable is the annualized change in employment-to-population ratio
(Panel A) and log-change in average wage (Panel B) over the robot technology adoption life cycle and phases. The first col-
umn is the long-difference estimate for the entire period (1995–2017). The second column corresponds to the effect of the
entire Robotics cycle, while the third and fourth columns correspond to the phases of the Robotics cycle. The last column
shows the coefficient for the first phase of the Intelligent Robots cycle. Exposure to robots (ROB) is calculated as shift-share
variables and then standardized. Panel A coefficients represent thepercentagepoint change in the regional employment-to-
population ratio for a one-standard-deviation increase in technology exposure during the cycle phase. Panel B coefficients
indicate the corresponding percentage change in the regional average wage. Control variables include the log of the popu-
lation in 1980, the change in ICT and SDB, final demand and trade exposure respectively over the cycle phase, and country
fixed effects. Regressions are weighted by the population in 1980. The sample excludes German NUTS-2 regions.
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Table C.27: Impact of ICT and SDB during Digital Technologies Cycles Excluding Spain

IV Reg. - Dep. var.: Annualized Δ in Outcome Variable
All Web 1.0 GraphUI - Cloud Big Data - AI
(1) (2) (3) (4) (5) (6) (7) (8)

1995-2017 1995-2004 1995-2001 2001-2004 2004-2013 2004-2009 2009-2013 2013-2017
[A] Δ Employment-to-population× 100

ICT Exposure 0.06∗∗∗ 0.25∗∗∗ 0.50∗∗∗ −0.86∗∗∗ −0.02 0.06 −0.10∗∗ −0.02
(0.02) (0.07) (0.11) (0.29) (0.03) (0.05) (0.04) (0.03)

SDB Exposure −0.05∗∗ −0.31∗∗∗ −0.45∗∗∗ 0.47∗∗ 0.03 −0.05 0.11∗∗∗ −0.01
(0.02) (0.06) (0.09) (0.21) (0.03) (0.04) (0.03) (0.03)

R2 0.65 0.55 0.51 0.56 0.84 0.70 0.87 0.60
Num. obs. 139 139 139 139 139 139 139 139
F statistic 14.18 9.43 8.00 9.77 39.32 18.17 50.52 11.38
[B] Δ Average wage (in log)× 100

ICT Exposure −0.19∗∗ −0.80∗∗∗ −1.25∗∗∗ 0.86 0.05 0.04 −0.00 0.30∗∗∗

(0.07) (0.27) (0.40) (0.63) (0.06) (0.15) (0.09) (0.09)
SDB Exposure 0.18∗∗ 0.96∗∗∗ 1.16∗∗∗ −0.20 0.05 0.12 0.00 0.13∗

(0.08) (0.26) (0.35) (0.45) (0.07) (0.13) (0.08) (0.08)
R2 0.68 0.73 0.53 0.81 0.77 0.59 0.89 0.67
Num. obs. 139 139 139 139 139 139 139 139
F statistic 16.29 20.46 8.75 31.83 24.91 11.17 63.83 15.77
Notes: ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses. This table summarizes the estimated coefficients for the IV regressions where the
outcome variable is the annualized change in employment-to-population ratio (Panel A) and log-change in averagewage (Panel B) over the digital technologies adoption
life cycle and phases. The first column is the long-difference estimate for the entire period (1995–2017). The second and fifth columns correspond to the two entire cycles,
while the third and fourth columns correspond to the phases of the Web 1.0 cycle, the sixth and seventh columns correspond to the two phases of the Graphical User
Interface and Cloud Computing cycle, and the last column corresponds to the first phase of the Big Data and AI cycle. Exposure information and communication (ICT),
and software-database (SDB), are calculated as shift-share variables and then standardized. Panel A coefficients represent the percentage point change in the regional
employment-to-population ratio for a one-standard-deviation increase in technology exposure during the cycle phase. Panel B coefficients indicate the corresponding
percentage change in the regional average wage. Control variables include the log of the population in 1980, the change in robot, final demand and trade exposure
respectively over the cycle phase, and country fixed effects. Regressions are weighted by the population in 1980. The sample excludes Spanish NUTS-2 regions.
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Table C.28: Impact of Automation Technologies – Pre-trends

IV Reg. - Δ Employment-to-population × 100
Pre-trend 1995-2001

ROB Exposure 0.06∗∗ 0.15∗∗∗

(0.03) (0.04)
ICT Exposure 0.14∗ 0.41∗∗∗

(0.07) (0.11)
SDB Exposure −0.01 −0.34∗∗∗

(0.08) (0.11)
R2 0.63 0.60
Num. obs. 158 158
F statistic 15.97 14.09
Notes: ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standarderrorsbetweenparentheses. This table
summarizes the estimated coefficients for the IV regressionswhere the outcome variable is
theannualizedchange inemployment-to-population ratio. Thefirst columnreports the co-
efficients for the period 1983–1989 (Pre-trend) and the second column for 1995-2001. Coef-
ficients represent the percentage point change in the regional employment-to-population
ratio for a one-standard-deviation increase in technology exposure during the cycle phase.
Control variables include the log of the population in 1980, and country fixed effects. Re-
gressions are weighted by the population in 1980.

D Additional Figures

Figure D.1 presents the technology stocks (per thousand workers in 1980) from 1995 to 2017,
expressed as an index, for robots, communication technology, information technology, and
software anddatabases. Thefirst rowofpanels displays the raw time series, which is increasing
for all technologies. The second row of panels depicts the detrended variables, accounting for
long-term patterns in technology investment. Lastly, the third row of panels further adjusts
for the level of final demand, which could influence investment dynamics. Consequently, this
row illustrates the investment in each technology, net of long-term trends and final demand
dynamics.
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Figure D.1: Technology Stocks per Thousand Workers in 1980

Notes: This figure shows the evolution of the technology stock per thousand workers in 1980 aggregated at the European level (this is, aggre-
gated for the 12 European countries in the sample). Panel ‘Raw’ refers to the series in levels, panel ‘Untrended’ displays the residuals after
regressing the Raw series on a liner time trend, andpanel ‘Untrended + Final demandnet’ shows the residuals after regressing the ‘Raw’ series
on a liner time trend and on the real consumption (to account for business cycles). TLC stands for technology life cycles.

E Correlation Between Exposure ToTheDifferent Technologies
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Figure E.1: Correlation between Software and Database and ICT Exposure. 1995-2017

Notes: This figure shows the correlation between the change in regional exposure to information and communication (ICT, x-axis), and
software-database (SDB, y-axis) between 1995–2017. Exposure to ICT and SDB are calculated as shift-share.

Figure E.2: Correlation between Robots and Digital Technologies Exposure. 1995-2017

Notes: This figure shows the correlation between the change in regional exposure to robots (ROB, x-axis), and digital technologies (this is ICT
& SDB aggregated, y-axis) between 1995–2017. Exposure to robots and digital technologies are calculated as shift-share.

F Technological Cycles: Summarizing Major Developments

In this section, we summarize the major technological developments of digital automation
technologies by technology cycles.
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Table F.1: Major Technological Developments during the Web 1.0 Cycle (1990–2004)

Computational power 1980s Personal computers
1993 Intel Pentium microprocessor (Intel)

Network communication 1990 HTML (Tim Berners Lee, CERN)
1993 MOSAIC (Eric Bina, Marc Andreesen; University of Illinois)

2000s Diffusion of internet and digital infraestructure
Software 1990 Windows 3.0 (Microsoft)

1991 LINUX (Linus Torvalds)
1990s Diffusion of World Wide Web (WWW)

Notes: Own elaboration based on Freeman and Louçã (2001), Mowery and Simcoe (2002), and Table 4 from Nuvolari (2020).

F.1 Web 1.0

Table F.1 outlines major technological developments during the Web 1.0 cycle (1990–2004).
Advancements in mainframes and microcomputers began in the 1960s and 1970s. However,
only with the reduction in price and size of microprocessors did personal computers become
available for use in administrative tasks and smaller firms (Malerba et al. 1999, Freeman and
Louçã 2001).²⁸ Concurrently, newer and more user-friendly operating systems like Windows
3.0 in 1990, Linux in 1991, and Windows 95 facilitated widespread adoption.

In contrast to previous decades when the Internet was confined to researchers and en-
gineers, the number of Internet hosts significantly increased in the late 1990s (Mowery and
Simcoe 2002). This surge was facilitated by firms adopting computer hardware, the develop-
ment of the HTTP protocol and HTML language, and the introduction of browsers designed
for reading HTML documents (Mowery and Simcoe 2002). HTML and HTTP, introduced in
the 1990s, enabled multimedia content in web pages and cross-referencing sources, allowing
quick access to numerousmultimedia pages. This gave rise to theWWW in 1991. TheMOSAIC
andNetscapebrowsers, introduced in 1993 and1995 respectively, simplifiedand standardized
online document visualization.

By 2002, over 50% of firms with 10 or more employees were utilizing the Internet (Pilat
2005). The percentage varies by country, with Japan and the Scandinavian countries lead-
ing adoption, with almost all firms using the Internet. The dramatic diffusion of the Internet
changed retail dynamics and gave rise to online commerce (Mowery and Simcoe 2002). Major
online retail companies like Amazon and eBay started operating in 1995. By 2001, a significant
percentage of companies in Europe were using the Internet for sales or purchases (Mowery
and Simcoe 2002).

²⁸In the U.S., private fixed investment in IT grew by around 98% between 1970 and 1999 (Mowery and Simcoe
2002).
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Table F.2: Major Technological Developments during the Graphical User In-
terface and Cloud Computing Cycle (2004–2013)

Web 2.0 2004 Flickr API
2006 Facebook and Twitter API
2008 AppStore
2012 Google Play

Cloud Computing 2006 Elastic Compute Cloud Commercial Services (EC2)
2010 Microsoft Azure

Notes: Own elaboration based on Lane (2019).

The adoption of ICT triggered significant changes to firms’ organizational structures, af-
fecting business organization, communication with customers and suppliers, and work prac-
tices. ICT replaced various easily codified andprogrammedactivitieswhile creating new tasks.
Qualitative firm-level research provides evidence of these changes. For example, Autor et al.
(2002) offer a case study of a U.S. bank adopting check imaging and OCR software. The tech-
nology automated check reading and made electronic checks available to all workers, leading
to the reorganization of certain activities and more specialized employment. Before digital-
ization in 1994, check exception examination involved around 650 clerks, with one worker
overseeing the entire process per check. After adopting OCR software, checks became acces-
sible electronically to multiple workers simultaneously, resulting in specialized tasks related
to processing overdrafts, implementing stop payment orders, and verifying signatures (Autor
et al. 2002).

F.2 Graphical User Interface and Cloud Computing

Table F.2 outlines the major technological developments during the Graphical User Interface
andCloudComputing Cycle (2004–2013) Gradually, developments in the internet led to a new
phase known as ‘Web 2.0’. While there is no precise definition of Web 2.0, it encompasses vari-
ous dimensions, including technological aspects like AJAX, RIA, and XML/DHTML; principles
such as participation, collective intelligence, and a rich user experience; and applications and
tools like Wikipedia, Flickr, and Mashups (Kim et al. 2009). This phase is characterized by the
perception of the Internet as a collaborative platform where users actively contribute to the
development and improvement of applications. Social media platforms developed APIs, be-
coming primary channels for connecting individuals (Lane 2019), facilitating the creation of
new applications and services seamlessly integrated with social media. In 2007, Apple initi-
ated the ‘App Revolution’ by launching its software development kit for third parties, allowing
developers to create apps for the iPhone. The Apple App Store launched in 2008, followed by
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Google Play in 2012 (Crook 2018).
Anothernotable featureof thisphase is the increasingdata intensityof applications,where

improvement is related to thenumberofusers (O’Reilly 2007). Companies leveragevast amounts
of data from social media to tailor advertising based on consumer preferences. Data analytics
has shifted from structured data to unstructured data using natural processing methods (Lee
2017). Cloud computing became more widespread in the 2000s, with Amazon introducing its
Elastic Compute Cloud (EC2) service for businesses in 2006. Private clouds became available
in 2008, and in 2010, Microsoft and other companies launched more accessible, user-friendly,
and affordable cloud computing services (Foote 2021).

According to Eurostat, by 2021 around 40%of EU enterprises were using cloud computing
services, with varying intensity across countries. Over 60% of enterprises in Sweden, Finland,
the Netherlands, and Denmark use cloud computing. For detailed figures, see the EUROSTAT
website.

Increasing investment in cloud computing services suggests a negative associationwith IT
capital and software investment. Firms’ fixed capital in IT tends to decrease, while cloud ser-
vices enable thegrowthof start-upsandsmall andmedium-sizedfirms (BloomandPierri 2018,
DeStefano et al. 2023). This outcome appears driven by the lower costs of cloud services com-
pared to thehighfixed costs of ICT investments, which represent a substantial entry barrier for
new firms (Etro 2009). The creation of more smaller firms has positive consequences for em-
ployment. Since small and medium-sized firms tend to be associated with high employment
growth, their emergence enabled by cloud computing services positively affects employment
(Etro 2009, Bloom and Pierri 2018).

F.3 Big Data and Artificial Intelligence

Table F.3 presents the major advances in the ongoing Big Data & Artificial Intelligence cycle.
The spread of IoT technology, enabling physical objects equipped with sensors to communi-
cate and share data with computing systems through wired or wireless networks without hu-
man mediation, is revolutionizing data collection, sharing, and transfer (Lee 2017). Technolo-
gies such as Wireless Sensor Networks (WSN), Radio-frequency identification (RFID), Blue-
tooth, Near-field communication (NFC), and Long Term Evolution (LTE) connect objects to
the Internet and each other, facilitating data exchange (Khanna andKaur 2020). The IoT, along
with social media, is becoming a major source of data generation, including images, videos,
and audio (Lee 2017). This technology is pervasive across various sectors, including aerospace,
defense, agroindustry, precision agriculture, automotives, pharmaceuticals, consumer goods,
chemicals, and ICT (Andreoni et al. 2021). For a comprehensive review of IoT uses in different
sectors, see Andreoni et al. (2021).
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Table F.3: Major Technological Developments during the Big Data & Artificial Intelligence Cy-
cle (2013–)

Internet of Things 2013 IoT becomes more widespread due to hardware platforms
2016 IoT products widely available in the market

Big Data & Data analytics 2013 Hadoop 2.0, Apache Spark, Apache Storm, Apache Samza
2014 Apache Flink
2015 Apache Apex
2016 Zettabyte Era

Artificial Intelligence (ML & DL) 2014 VVGNet, GAN, and GoogleNet
2015 ResNet
2016 DenseNet
2017 WGAN

Notes: Own elaboration based on Barnett (2016), Gupta and Rani (2019), Khanna and Kaur (2020), and Cao et al. (2018).

Based on thewidespread internet penetration from the previous period, big data and data
analytics have surged significantly. For instance, Gupta and Rani (2019) shows that research
publications related to big data in 2017 increased 126-fold compared to 2011. This coincided
with the creation of several big data processing platforms, widely available since 2013 through
Apache (Gupta and Rani 2019). The Apache Software Foundation (ASF), a non-profit organi-
zation, provides open-source software. According to Gupta and Rani (2019), Apache Spark is
one of the most popular systems for large-scale data processing, outperforming Hadoop by
using in-memory processing rather than a file system (IBMCloudEducation 2021). Other plat-
forms released in this period, like Apache Storm and Apache Samza, are used for real-time an-
alytics, cybersecurity, threat detection, and performance monitoring (Gupta and Rani 2019).
Theseplatformsweredevelopedby socialmedia companies, suchasBackType (ApacheStorm)
and LinkedIn (Apache Samza). The compound annual growth of social media analytics is pro-
jected to be 27.6% between 2015 and 2020 (Lee 2017).

AI is gaining increasing attention as a subset of computer science designed to train ma-
chines to perform cognitive activities associated with human intelligence, such as learning,
problem-solving, and interaction (Brynjolfsson and McAfee 2014, Baruffaldi et al. 2020). The
major components of AI are machine learning and deep learning, which rely on neural net-
work techniques.

AI’s ability to perform various functions has led to its application in several industries
(Cockburn et al. 2018) for tasks such as visual and speech recognition, predictive analysis, ma-
chine translation, information extraction, and system management/control (Vannuccini and
Prytkova 2023, Calvino et al. 2022).

The main distinction between machine learning and information and communication
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technology (ICT) lies in that while computerization codifies pre-existing knowledge related
to repetitive activities, machine learning enables machines to learn from examples to achieve
specific outputs (Brynjolfsson and Mcafee 2017). This process involves supervised learning
systems,wheremachinespredictparticular resultsbasedon inputs from largedatabases. Progress
in machine learning is closely tied to big data and the development of new algorithmic tech-
niques, highlighting the interdependence between these technologies. These techniques en-
hance predictive power using backpropagation with multiple layers and vast datasets (Cock-
burn et al. 2018). Examples of AI applications include medical diagnoses, where machines
now achieve higher accuracy than humans, and legal activities, where computers scan and
process extensive legal documents for trials (Frey andOsborne 2017). These examples demon-
strate AI’s capability to handle cognitive non-routine activities.

Overall, AI adoption among firms remains relatively low. Between 2016 and 2018, only
3.2% of firms in the U.S. were using or testing AI (Acemoglu et al. 2022). Additionally, research
shows that adoption is more prevalent among larger and older firms (Zolas et al. 2021, Ace-
moglu et al. 2022).
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