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Abstract

This paper examines the impact of digital automation technologies—ICT, robots, and soft-
ware and databases—on European regional labor markets during different investment
phases of technology life cycles from 1995 to 2017. We first identify major breakthroughs
and phases of investment acceleration and deceleration that characterize these life cycles.
We then examine how exposure to these technologies affects employment and wages dur-
ing various life cycle phases. We find both positive and negative short-term effects of au-
tomation on employment within these phases, which tend to offset each other in the long
run. The impact on employment rates varies by technology and phase: ICT and software
have significant effects in high-productivity, service-specialized regions, while for robots,
the life cycle phases are more critical than regional characteristics in explaining employ-
ment impacts.
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1 Introduction
The increased codification of tasks introduces the potential for automation technologies to
displace workers responsible for these tasks (Simon 1960), diminishing the demand for these
jobs (Autor et al. 2003). However, the literature suggests that in the long term, short-term la-
bor demand changes due to task codification are likely offset by enhanced productivity and
economic growth (Aghion et al. 2022), increased demand for final goods (Vivarelli 1995), and
the creation of new tasks (Autor et al. 2024). An underexplored question is the extent to which
different vintages of digital automation technologies, each codifying different tasks, have af-
fected labormarkets in the short term andwhether their impact varies across different phases
of each vintage’s diffusion as firms and workers adapt.

Technological advancements typicallyprogress through incremental changes interspersed
with breakthrough innovations, forming technology life cycles (Tushman and Anderson 1986).
These cycles start with rapid developments in various configurations and applications, cul-
minating in a dominant design (Abernathy and Utterback 1978). After standardization, the
technology undergoes incremental changes followed by a decline in innovative activity, lead-
ing to the next breakthrough and subsequent life cycle. The diffusion pattern of breakthrough
technology follows this cycle: after establishing the dominant design, adoption grows expo-
nentially, then slows as it reaches and surpasses the midpoint of potential adopter saturation
(Geroski 2000).

Thecodificationof tasks and the skills required toworkwithnew technologies changeover
the technology life cycle (Langlois 2003, Vona and Consoli 2015), which has two implications
for researchon the short-term impacts of automationon labormarkets. First, the impactsmay
vary across different breakthrough technologies (Prytkova et al. 2024).¹ Second, the direction
and intensity of labor market impacts may vary over the technology life cycle.

In this paper, we explore how short-term impacts on European regional labor markets
differ across the two phases of the technology life cycles of digital automation technologies,
specifically InformationandCommunicationTechnologies (ICT), SoftwareandDatabase (SDB),
and Robots. We identify the main breakthrough innovations within these technologies and
outline their respective life cycles. We then estimate the impact of exposure to each phase
on regional labormarkets, distinguishing between the initial accelerated diffusion period and
the subsequent decelerated diffusion period, which precedes the next technological break-

¹Tushman and Anderson (1986) and successive work suggest that technological breakthroughs can be
competence-enhancing or competence-destroying depending on which firms introduce the innovation. This
affects the knowledge and skills that are replaced, reconfiguring the demand for jobs. For instance, mechani-
cal automation, robotic automation, and intelligent robotics perform different tasks with varying abilities and
connectivity within the organization, and have different implications for employment within and outside man-
ufacturing firms (Zuboff 1988).
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through.
We study the impacts on regional employment rates and averagewages for a sample of 163

NUTS-2 regions in 12 European countries from 1995 to 2017. Due to the lack of firm adoption
data across EU regions, weproxy the adoption life cycle at the regional level using aggregate in-
vestment information for the three technology groups. Our empirical analysis integrates data
frommultiple sources: EU-KLEMS (Release 2021) for ICT and SDB investments, International
Federation of Robotics (IFR) data for robot investments, and ARDECO (Release 2021) for labor
market outcomes.

We start by identifying technology life cycles from1995 to 2017, based onmajor technolog-
ical developments and investment growth in digital technologies in the EU: robots, ICT, and
SDB. We identify major technological breakthroughs during this period based on changes in
technology investments. Specifically, we identify three life cycles reflecting the main digital
eras since the 1990s: World Wide Web 1.0 (1990–2004), Graphical User Interface and Cloud
Computing (2004–2013), and Big Data and Artificial Intelligence (2013–).

Weassess the impactof theseautomation technologieson regional labormarketoutcomes
during the distinct technology life cycle phases. Specifically, we estimate the influence of re-
gional exposure to these technologies on the employment-to-population ratio and average
wage. To determine the effects of regional exposure to each technology, we use a shift-share
instrumental variable (IV) approach, as employed in previous studies (Chiacchio et al. 2018,
Aghion et al. 2019, Acemoglu and Restrepo 2020, Dauth et al. 2021). This approach is tailored
to our identified technology life cycles. We use investment in these technologies during the
same cycle phase in theUS as an instrument to address potential endogeneity in European ex-
posure. Categorizing regions based on their sectoral specialization and labor productivity in
1980 (i.e., before our period of analysis) allows us to investigate whether the impacts of these
technologies vary with these regional characteristics. Our investigation spans the technology
life cycle phases identified earlier.

The analysis yields four main results. First, we find significant short-term positive and
negative impacts of ICT, SDB, and robots on the regional employment-to-population ratio
during several phases of their technology life cycles. These annualized short-term effects are
substantially larger than the annualized long-term effects we estimate. For ICT and SDB, this
difference is due to the canceling out of short-term negative and positive effects. For robots,
the difference is due to the concentration of positive impacts in the first phase of the first
(1995–2001) and last life cycles (2013–).

Second, for robots, we find that the impact on employment rate and wages does not de-
pend on regional structural differences such as sector specialization and productivity. How-
ever, for ICT and SDB, the respective positive and negative short-term impacts are mostly ob-
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served in highly productive regions specialized in services, such as densely populated urban
areas.

Third, our findings suggest that the impact of ICT and SDB on the employment rate de-
pends on the technology life cycle phase, but this is not the case for robots. Regions most
exposed to ICT experience a reduction in the employment-to-population ratio during the sec-
ond phase of each technology life cycle, while the first phase impact is either positive or neu-
tral. Conversely, regions most exposed to SDB experience an increase in the employment-to-
population ratio during the second phase, with either negative or no impact during the first
phase.

Fourth, our results confirm that different digital automation technologies, such as ICT,
SDB, and robots, have different impacts on the employment rate and average wage. In the
long term, robots and ICT positively impact the employment rate, while SDB has a negative
impact. However, our first result suggests that these differences are better captured by pre-
cisely identifying the technology breakthroughs, or capital vintages, likely to be adopted in the
short term. Different breakthroughs have different impacts, which also depend on the phase
of the technology life cycle for some of these automation technologies. This information is
useful for predicting the future short-term impact of automation on employment.

This paper contributes to the extensive literature on the impact of automation technolo-
gieson labormarkets (Gooset al. 2014, Chiacchioet al. 2018,Graetz andMichaels 2018, Aghion
et al. 2019, Acemoglu and Restrepo 2020, Gregory et al. 2022). These studies focus predomi-
nantly on the long-term consequences of technology at various levels of analysis. US esti-
mates indicate a negative impact of robots on employment (Acemoglu and Restrepo 2020),
while findings for Europe are more mixed. For instance, Acemoglu et al. (2020) report nega-
tive employment impacts fromrobot investment, Dauth et al. (2021) findno significant effects,
and Reljic et al. (2023) observe a positive impact. Additionally, studies differentiating among
robots, CT, IT, and SDB report varying effects based on the specific technology and industry
involved (Blanas 2023, Jestl 2024). Furthermore, research focusing ondifferent periods reveals
varying impacts, depending on whether substitution or compensation effects dominate. For
example, Antón et al. (2022) note that the slight negative effect of robots on employment from
1995 to 2005 shifts to a positive effect from 2005 to 2015.

Ourworkmakes twomain contributions to this literature. First, we introduce a novel tech-
nology life cycle perspective for analyzing labor market adjustments in response to automa-
tion. Previous research often differentiates the effects of automation technologies based on
arbitrary time periods that encompass several technological breakthroughs. Instead, we ex-
plore the short-term dynamics defined by the specific life cycle of each of the three groups
of automation technologies: robots, ICT, and SDB. This approach provides a more nuanced
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understanding of how labor markets adjust to technological advancements within distinct
phases of technology development.

We identify two different scenarios empirically. In the first scenario, during the initial
phase of the technology life cycle, firms hoard technical workers as they integrate the new
technology (Domini et al. 2021).² In the later stages of the life cycle, the technology becomes
mature and standardized, firms integrate it efficiently, and task routinization is codified, lead-
ing to worker replacement.³ In the second scenario, early adopters of breakthrough technolo-
gies, typically the most productive and advanced firms, are likely to replace workers (Autor
et al. 2020). As these early adopters expand production, they potentially increase worker de-
mand during the technology’s mature stages (Vivarelli 1995). Ultimately, the prevailing sce-
nario, and thus the impact of digital automation on employment, depends on the technology
and its integration into production processes. We find that ICT follows the first scenario, SDB
the second, while the impact of robots on labor markets does not depend on the technology
life cycle phase.

Second, we contribute to the literature by investigating how the impacts of automation
technologies on labormarkets vary among regionswithdifferent initial productivity levels and
sectoral specialization. For instance, Foster-McGregor et al. (2021) highlight the influence of a
country’s sectoral structure on its exposure to automation. Our findings suggest that regional
differences are significant for ICT and SDB but not for robots.

The paper is structured as follows. Section 2 describes the variables and the databases
used for our analysis. Section 3 identifies the technology life cycles and outlines the primary
innovation breakthroughs for robots, ICT, and SDB. Section 4 describes the empiricalmethod-
ology and our tailored IV strategy. Section 5 presents the results for the effects of automation
technologies duringdigital technology life cycles, anddiscusses theprincipal regularities iden-
tified. Section 6 provides concluding remarks.

2 Data

2.1 Sample

We analyze the impact of technology exposure on labor market outcomes across 163 NUTS-2
regions from 12 European countries over the period 1995 to 2017. The 12 countries included

²This is because the routinization of tasks is incomplete and requires adjustments, necessitating technicians
(Lewis 2020). Retrainingexistingworkers is costly and time-consuming (David1985), leadingfirms to reconfigure
their production organization (Langlois 2003, Ciarli et al. 2021, Battisti et al. 2023).

³For example, VonaandConsoli (2015)note that the substitutability betweenworkers andmachines increases
with technological developments as task standardization improves.
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are Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Netherlands,
Spain, and Sweden.⁴

2.2 Data Sources and Variables

Labor market. We examine labor market outcomes at the regional level, focusing on vari-
ables related toemploymentandwages, constructedusingNUTS-2 level data fromtheARDECO
database (2022 release).⁵

For employment,weconsiderboth level of employmentdefinedas the total numberof em-
ployed individuals aged between 15 and 64, and the employment-to-population ratio which
is the proportion of employed people aged 15 to 64 relative to the total population.⁶

For wages, we focus on the average annual wage per worker, expressed in thousands of
euros (2015 values), computed by dividing total compensation by the level of employment.

Exposure to automation technologies. We consider four automation technologies:

1. Robot: “programmed actuated mechanism with a degree of autonomy to perform loco-
motion, manipulation or positioning” (ISO 8373:2021);

2. Communication Technology: “specific tools, systems, computer programs, etc., used to
transfer information among project stakeholders” (ISO 24765:2017);

3. Information Technology: “resources required to acquire, process, store and disseminate
information” (ISO 24765:2017);

4a. Computer Software: “computer programs, procedures and possibly associated docu-
mentation anddata pertaining to the operationof a computer system” (ISO24765:2017);

4b. Database: “collection of interrelated data stored together in one or more computerized
files” (ISO 24765:2017).

⁴WeexcludeEasternEuropeancountries for twomethodological reasons: first, data on initial sectoral employ-
ment shares in 1980 required by our shift-share design to measure the technology exposure of European regions
are not available for some of these countries, and second, identification of automation technology investment
cycles requires a balanced panel of technology stocks for the period 1995-–2017. Our objective is to assess the
impact of exposure to automation technologies across the entire set of countries and anunbalancedpanelwould
bias the identification of these cycles towards the subset of countries with data available up to 1995.

⁵ARDECO stands for ‘Annual Regional Database of the European Commission’ and is elaborated and main-
tained by the Directorate General for Regional and Urban Policy in the Joint Research Center. It has information
on population, employment (persons and hours worked), wages, labor costs, domestic product and capital for-
mation since 1980 at NUTS-3, NUTS-2, NUTS-1 and country level. The employment variables are disaggregated
at broad sectoral levels. Table A.1 summarizes the industry classification.

⁶We acknowledge that the ratio suffers from the limitation that the nominator growths more than the denom-
inator as result of the aging population. However, in the ARDECO database we only have information for the
total population, so it is not possible to exclude people with 65 or more.
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We consider computer software (4a) and database (4b) as a single technology based on the
available data.

We use the number of robots (i.e. robot stock) in use in each sector at the country level
from the 2019 Release of the IFR data (see Jurkat et al. (2022) for a comprehensive review).
Robots arepresent in threeoutof six sectors: Industry (B-E),Construction (F), andNon-Market
Services (O-U).⁷ Since approximately 30% of robots are unspecified (i.e. not assigned to a par-
ticular sector), we distributed them proportionally across sectors based on sectoral share.⁸
Additionally, for some countries (such as the US) where numbers of robots are not available
at the sectoral level for certain years, we estimate their number by distributing the total num-
ber of robots weighted by the average sectoral share using years with available data.⁹

ICT and SDB data are from the EU-KLEMS database (Release 2021). We capitalize on the
fact that this database distinguishes between these technologies which allows us to analyze
the stock of communication equipment and computing equipment (i.e. ICT), and computer
software and database (i.e. SDB) at the country-industry level. Our measures for these tech-
nology stocks are capital stock (in 2015 volumes), derived fromnational accounts.¹⁰¹¹ ForDen-
mark andSweden,weconvertedEUKLEMSfigures into eurosusing thenominal exchange rate
from EUROSTAT.

Control variables. To account for other factors that might influence regional labor market
outcomes, we include two control variables (both in shift-share) to isolate the role of invest-
ment in automation. First, we adjust for changes in final domestic demand using the real
consumption index from the Inter-Country Input-Output database.¹² We do this to absorb

⁷It is worth noting that IFR Release 2019 has information at ISIC Rev. 3.1. As the rest of our data sources
are at ISIC Rev. 4 (which corresponds to NACE Rev. 2), we harmonized them to be compatible with the latter
classification. Given that we work at 1-digit level industry level and even further aggregations, constrained by
the ARDECO database, this does not imply major distortions. Tables A.1 and A.2 provide more details on the
harmonization.

⁸Specifically, we calculated the ratio of the number of robots in each sector to the total number of robots
assigned to sectors and allocated the unspecified robots based on these ratios. While some studies do not dis-
tribute unallocated robots across sectors (see Graetz and Michaels 2018, Dauth et al. 2021), in our case, doing so
ensures a harmonized series that is comparable when aggregating our measure of technology exposure across
sectors.

⁹For instance, suppose that for a specific country, sectoral robot stock data are missing for 1995 to 2000. We
then calculated average sectoral shares from 2001 to 2017 and imputed numbers for the earlier years by applying
these estimated shares to the total robot count.

¹⁰Investmentwould have been a bettermeasure due to small differences in accounting for depreciation across
national statistical offices. However, in the case of the IFR data on robots due to the different compliance rules
described in Jurkat et al. (2022) robot flows (robot installations per year) are tracked inconsistently across coun-
tries. Since inconsistent data on stocks from EUKLEMS is less problematic, we use stocks.

¹¹For Ireland, technology stock data are available at the country but not the sectoral level. For this country,
we estimated them by allocating country-level technology stocks to the respective sectors in Ireland based on
sectoral share in Ireland’s gross fixed capital formation.

¹²OECD (2021), OECD Inter-Country Input-Output Database, http://oe.cd/icio. Release: November 2019.
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the effect associated to business cycles in our outcome variables. Second, we consider the po-
tential impact of trade and international competition by controlling for imports from China
recorded in the OECD Trade in Value Added database.¹³ Increased trade with emerging coun-
tries has been shown to have adverse effects onmanufacturing employment (Autor et al. 2013,
Dauth et al. 2014, Autor et al. 2015).

Instrumental variable. To address the endogeneity in the relationship between the deci-
sion to invest in automation technologies and labor market outcomes, we use data on in-
vestment in the United States in similar automation technologies as an instrument for invest-
ment by European regions. These data are from the IFR (for robots) and EU-KLEMS (for ICT
and SDB).¹⁴ To construct our instrument (described in Section 4), we normalize the technol-
ogy stock using sectoral employment data from 1980, sourced from the OECD Annual Labour
Force Statistics (ALFS).¹⁵

3 Technological Breakthroughs and their Life Cycles
Similar to innovations in other technologies, automation innovations tend to cluster tempo-
rally around major breakthroughs, promoting a series of incremental innovations that lead to
the next major advancement (Silverberg and Verspagen 2003).

In this section, we qualitatively identify the primary innovation breakthroughs in digital
technologies (robots, ICT, and SDB) since 1990 by combining insights from the innovation
and engineering literature. Next, we analyze the diffusion of these breakthroughs across Eu-
rope over time, examining investment trends in these technologies. We differentiate between
periods of accelerated investment (early adoption of new technology) and slower investment
(late adoption of mature technology) before and after each breakthrough.

3.1 Breakthroughs inDigital Technologies: From theWeb1.0 toBigData
and AI

The ICT revolution, which began in the early 1970s, has been described as “a set of interre-
lated radical breakthroughs, forming a major constellation of interdependent technologies”
(Freeman and Perez 1988, Perez 2010). Nuvolari (2020) identifies four major interdependent
technological ICT elements: electronic components, computational power (semiconductors

¹³OECD (2021), OECD Trade in Value Added Database, http://oe.cd/tiva. Release: November 2021.
¹⁴Sectoral robot data for the U.S. are available from 2004. We impute earlier data using the methodology ex-

plained earlier in this section.
¹⁵OECD (2022), OECD ALFS, https://stats.oecd.org/.
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Figure 1: Main Digital Technology Innovations Since 1990

Notes: Figure 1 presents the main digital technology innovations since 1990. The 3 digital technological cycles are Web 1.0 (1990 to 2004),
Graphical User Interface and Web 2.0 (2004 to 2013), and Big Data and Artificial Intelligence (from 2013).

and computers), software, and networking equipment. Radical advancements in these com-
ponents can lead to significant innovations in ICT. In particular, the development ofmicropro-
cessors was central to the ICT revolution, enhancing the computational capacity of electronic
devices such as computers while also reducing their cost (Freeman and Louçã 2001).

Figure 1 presents the main digital technology innovations since the 1990s and highlights
three major radical shifts in various ICT components (breakthroughs): Web 1.0 (1993–2004),
Graphical User Interfaces and Cloud Computing (2004–2013), and Big Data and Artificial In-
telligence (AI) (2013–present). We highlight the main features of these three breakthroughs
here and provide a more detailed description of the technologies and their components in
Appendix E.

Web 1.0. During the 1990s, the reduced size and cost of microprocessors significantly in-
creased the adoption of personal computers. The introduction of user-friendly operating sys-
tems such asWindows 3.0 and Linux led to thewidespread adoption of computers (IT). Along-
side these technical changes, the emergenceof theWorldWideWeb (WWW) in1993 facilitated
the adoption of the Internet (CT) by businesses (e.g., e-commerce) and end-users. While soft-
ware development, notably Windows 3.0, played a crucial role in disseminating ICT to end-
users, investment in databases was limited.

Advancements in ICT and SDB laid the foundations for advances in industrial robots. The
development of robotics in the 1990s built on three main technologies integral to the third
generation of robots (1978–1999) identified by Gasparetto et al. 2019. These technologies in-
clude remote and self-programming capabilities enabled by microprocessors, sensors, and
rudimentary ’intelligence’ for diverse condition responses and environmental interactions
(e.g., visual or tactile inspection and servo controls), and the capability for six-axismovements
(see discussion in Savona et al. 2022). Advances in communicationprotocols during the 1990s,

8



including the Internet, the WWW, and wireless technologies, further expanded control capa-
bilities and spatial movements, leading to the emergence of mobile robots (Grau et al. 2017).
This expansion impacted the automobile industry and, crucially, other manufacturing indus-
tries (Hägele et al. 2016, Gasparetto et al. 2019).

Graphical User Interface and Cloud Computing. The second technological breakthrough
was marked by the emergence of Web 2.0 technologies in the early 2000s, following signifi-
cant advancements in Graphical User Interface (GUI) and Cloud Computing. Previous digital
infrastructure developments (i.e., the Internet and mobile communication) spurred the cre-
ation of user-friendly devices such as smartphones. This era gave birth to significant network
economies (Mansell 2021) and the proliferation of new service applications (e.g., social me-
dia, electronic commerce, search engines, data analytics). During this period, databases also
became increasingly central to both final and intermediate demand, as computational power
grew and Application Programming Interfaces (APIs) were developed.

Regarding robots, while they improved over the years, there was no radical change in the
technology, but rather a continuationof the technological patterns observed in the early 1990s.
The integration and advancement of Industry 4.0 technologies in the early 2000s marked the
advent of a new era in robotics.

Big Data and Artificial Intelligence. The third technological breakthrough is characterized
by the latestwave of AI, drivenby increased investments in neural networks anddeep learning.
This period is marked by advancements in machine learning and deep learning algorithms,
enabled by the growing availability of large data sets (big data) and rapid increases in compu-
tational power (facilitated by cloud computing). Significant enhancements to networking and
communication technologies have enabled the diffusion of the Internet of Things (IoT).¹⁶

The evolution of these digital technologies has enabled a significant shift in robotics. The
development of AI technologies, in parallel with the emergence of the IoT and sophisticated
sensors, paved the way for intelligent computing systems. More sophisticated sensors and
wireless communication technologies allow complete mobility on manufacturing floors and
self-coordination involving swarmsofdevices (IoT).These radical developmentshave increased
the autonomy of robots, their ability to collaborate with humans, and their precision in vari-
ous industrial applications (Müller 2022).

¹⁶The IoT can be defined as a suite of technologies that allow physical objects (equipped with sensors) to com-
municate and exchange data with computing systems via wired or wireless networks without human interven-
tion (Lee 2017). Alongside social media platforms, the IoT is promoting data generation and further AI develop-
ments.
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In summary, during the period analyzed (1995–2017), we identify three primary devel-
opments (breakthroughs) in digital technologies. The first breakthrough is the emergence of
Web 1.0 technologies and software, alongside cheaper computing costs and rapid advances
in user-friendly software (1990 onwards). The second breakthrough is the emergence of Web
2.0 and GUI, with simplified data acquisition technologies (e.g., APIs), cloud computing, and
storage (2005 onwards) as the main milestones of this era. During this period, we also ob-
serve enhancements in flexibility, control, and sensing capabilities with the third generation
of robots.¹⁷ Finally, the AI and connectivity (IoT) revolutions (2013 onwards) align with the
introduction of the fourth generation of intelligent robots, which built on developments in AI
(2010 onwards).

3.2 Technology Life Cycles in Digital Technologies

We examine investment in digital technologies since 1990. The aim is to determine whether
the pace of investment changes throughout each breakthrough’s life cycle—typically acceler-
ating adoption following a breakthrough and decelerating before the next one.

We analyze investment patterns in digital technologies (ICT and SDB) aggregated at the
European level.¹⁸ We aggregate investment stock in these technologies (per thousandworkers
in 1980 at constant prices) across all European countries.¹⁹ As expected, investment in digital
technologies has increased annually since 1990 (see Figure D.3 in the appendix).

To assess the rate of increase, in Figure 2, we calculate the first difference in the time se-
ries after applying a 3-year moving average to smooth short-term fluctuations. The left y-axis
depicts the change in investment in digital technologies. To differentiate technology-driven
investment from business cycles, we also show the trends in final demand (real household
consumption) on the right y-axis as a proxy for the latter.

The patterns of investment in digital technologies from 1995 to 2017 show three stages of
acceleration and deceleration. The Web 1.0 breakthrough in the early 1990s was followed by
an investment acceleration phase that persisted until around 2001, succeeded by a declining
rate of change up to around 2004/5. This period coincided with the emergence of the second

¹⁷To clarify, the core technologies that led to robot improvements in the early 1990s prevailed until the early
2000s.

¹⁸We cannot aggregate robots with ICT and SDB, as robot data is measured in units, while the former are mea-
sured in monetary value. However, analyzing changes in robot stock separately reveals significant shifts in the
pace of investment that align with ICT and SDB. This can be observed in Figure D.4 in the appendix.

¹⁹The technology stocks are calculated in volume terms and are not directly additive. Therefore, we used the
EU-KLEMSmethodology togenerate aggregates (EUKLEMS&INTANProd2021). Wecalculatedaggregationat the
European level at both the current and previous year’s prices and derived a European-level volume index, which
we used to chain-link the values using 2015 as the base year. We then normalized the series by employment
aggregated at the European level in 1980.
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Figure 2: Investment in Digital Technologies and Final Demand in First Difference

Notes: This figure depicts the evolution of the first difference in digital technologies (left y-axis) and real consumption (right y-axis) per thou-
sand workers at the EU level, aggregated for the 12 European countries in the sample. Both series are smoothed by taking the 3-year moving
average. Digital technologies comprise ICT and software and databases. The data on consumption correspond to the final consumption
expenditure of households from the OECD Input-Output Tables (2021 edition). This series has been adjusted into real consumption figures
by deflating it with the consumer price index provided by the OECD (base year 2015=100).

breakthrough in our timeframe: GUI and cloud computing. Investment again accelerated
from 2008 to 2011, depending on the technology group, and then declined before the next
breakthrough (big data and AI) in 2014. The third technology cycle began in 2014, with all
three technologies experiencing ongoing increases in investment up to 2017. The trends in
digital technology investment substantially differ from those in real consumption, where we
observed a sharp acceleration up to 2004, followed by a deceleration trend.

Although there is some overlap in the trends of both series during the second phase of the
GUI & Cloud Computing era, Figure 2 shows that digital technology investment diverges from
business cycles.

Table 1 summarizes the technology life cycle phases. The investment patterns in digital
technologies in Europe qualitatively indicate a technology lifecycle characterized by increas-
ing rates of adoption following each breakthrough in the various components of these tech-
nologies and decreasing rates prior to the next breakthrough. The trends in investment in digi-
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Table 1: Phases of the Technology Life Cycles

Cycle Phase Period
Web 1.0 ↑ 1995-2001

↓ 2001-2004
GUI & Cloud Computing ↑ 2004-2009

↓ 2009-2013
Big Data - AI ↑ 2013-2017

Notes: This table summarizes the years of each phase in the
technology life cycles of digital technologies. A ↑ indicates the
first phase of rapid diffusion of early vintages of the technology,
whereas a ↓ indicates the last phase of slower diffusion of later
vintages of the technology.

tal technologies and the discussions in Section 3.1 imply the presence of distinct phases in the
evolution and use of these technologies, with potentially varying impacts on the labor market.
Therefore, in what follows, the phases of acceleration and deceleration along the technology
lifecycle will be the time periods in our labor market analysis.

Robustness checks. To validate our results, we also tested an alternative methodology. We
regressed the investment time series for digital technologies against a linear time trend and
real consumption per thousand workers in 1980 aggregated at the European level.²⁰ The re-
sults are depicted in Figure D.3 in the appendix. The second panel shows the residuals after
regressing the time series on a linear time trend, and the third panel presents the residuals
after including both the time trend and real consumption. It follows that the evolution of the
first difference series, and consequently, the phases of investment, are extremely similar to
those in Figure 2. Hence, we can be confident that our approach captures periods of rapid
change (either increase or decrease) in technology investment.

4 Empirical Specification
Having delineated the technological breakthroughs in digital technologies, we next evaluate
the impact of investment in robots, ICT, and SDB on regional labor markets in Europe. The
availability of country-level data on robots, ICT, and SDB investments allows us to calculate
technology exposure (i.e., change in the technology stock) as a shift-share instrument across
different phases of digital technology cycles. We estimate our baselinemodel for labormarket

²⁰We controlled for final demand, real consumption per thousand workers, to account for business cycle ef-
fects in investment in these technologies.
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adjustments in response to technology exposure throughout these lifecycle phases. Finally, to
address identification issues,we implement an IV strategy thatusesUS technology investment
as an instrument for technology investment in European regions.

4.1 Shift-shareTechnologyExposure inTechnological InvestmentPhases

We measure exposure of a European region 𝑟 to technology 𝐾 between years 𝑡 and 𝑡 + ℎ us-
ing the standard shift-share measure in the literature (Chiacchio et al. 2018, Acemoglu and
Restrepo 2020, Dauth et al. 2021). Formally,

(𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐾
𝑟 )𝑡+ℎ

𝑡 = ∑
𝑖∈𝐼

𝑙𝑟𝑖,1980 (𝑇 𝑒𝑐ℎ𝐾
𝑐(𝑟)𝑖,𝑡+ℎ −𝑇 𝑒𝑐ℎ𝐾

𝑐(𝑟)𝑖,𝑡), (1)

where 𝑙𝑟𝑖,1980 is the share of employment of sector 𝑖 in region 𝑟 in 1980, and 𝑇 𝑒𝑐ℎ𝐾
𝑐(𝑟)𝑖,𝑡 is the

level of technology stock 𝐾 ∈ {𝑅𝑂𝐵,𝐼𝐶𝑇 ,𝑆𝐷𝐵} per thousand workers in sector 𝑖 at the
country level 𝑐(𝑟) in year 𝑡.²¹

We adjust our shift-share design to account for the segmentation of the period from 1995
to 2017 into sub-periods representing the different phases of the technology life cycles.

Consider the year 𝑡 + ℎ′ as a breakpoint (i.e., any intermediate year between 1995 and
2017) delineating two phases. We can divide the exposure defined in Equation (1) into the
phase before the breakpoint and the phase after the breakpoint, such that:

(𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐾
𝑟 )2017

1995 = ∑
𝑖∈𝐼

𝑙𝑟𝑖,1980 (𝑇 𝑒𝑐ℎ𝐾
𝑐(𝑟)𝑖,2017 −𝑇 𝑒𝑐ℎ𝐾

𝑐(𝑟)𝑖,𝑡+ℎ′

+𝑇 𝑒𝑐ℎ𝐾
𝑐(𝑟)𝑖,𝑡+ℎ′ −𝑇 𝑒𝑐ℎ𝐾

𝑐(𝑟)𝑖,1995).

By regrouping the termsandusing the exposuredefinitionderived fromEquation (1), total
exposure can be expressed as the sum of the exposures in both phases:

(𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐾
𝑟 )2017

1995 = ∑
𝑖∈𝐼

𝑙𝑟𝑖,1980 (𝑇 𝑒𝑐ℎ𝐾
𝑐(𝑟)𝑖,2017 −𝑇 𝑒𝑐ℎ𝐾

𝑐(𝑟)𝑖,𝑡+ℎ′)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≡ 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐾
𝑟,2

+ ∑
𝑖∈𝐼

𝑙𝑟𝑖,1980 (𝑇 𝑒𝑐ℎ𝐾
𝑐(𝑟)𝑖,𝑡+ℎ′ −𝑇 𝑒𝑐ℎ𝐾

𝑐(𝑟)𝑖,1995)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≡ 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐾
𝑟,1

,

where 1 refers to the technology investment phase between 1995 and 𝑡+ℎ′ and 2 to the tech-
²¹Consequently, our change in exposure is confined to changes in the technology stock. The sectoral shares of

employment in the region remain constant, and to avoid endogeneity issues, we use 1980 values.
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nology investment phase between 𝑡 + ℎ′ and 2017. This split in exposure can be generalized
to any number of phases as follows:

(𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐾
𝑟 )2017

1995 = ∑
𝜏∈𝜏

𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐾
𝑟,𝜏 , (2)

where 𝜏 is an investment phase.
Similarly, we consider labormarket adjustments over the different phases of technological

investment. This division is straightforward:

(𝑦𝑟)2017
1995 = ∑

𝜏∈𝒯
𝑦𝑟,𝜏 ,

which represents the change in the labor market outcome variable for region 𝑟 during the
phase 𝜏 .

In the remaining sections of the paper, the time units for analysis are the phases of invest-
ment acceleration and deceleration, 𝜏 , identified in Section 3.2.

4.2 Baseline Specification

To assess the relationship between labor market adjustments and exposure to technology 𝐾
throughout the various phases 𝜏 ∈ 𝒯 of digital technology life cycles, we use the following
specification:

𝑦𝑟,𝜏 = 𝛼+𝛽1𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑅𝑂𝐵
𝑟,𝜏 +𝛽2𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐼𝐶𝑇

𝑟,𝜏 +𝛽3𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑆𝐷𝐵
𝑟,𝜏 +𝑋′𝛾 +𝜙𝑐(𝑟) +𝑢𝑟, (3)

where 𝑦𝑟,𝜏 represents theannualized change in theoutcomevariable for region 𝑟 duringphase
𝜏 ,²²𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐾

𝑟,𝜏 is the region’s exposure to technology𝐾 during the samephase,𝑋 represents
control variables (including the log of the population, the change in final demand, and trade
exposure), 𝜙𝑐(𝑟) are country fixed effects, and 𝑢 is the error term. Observations are weighted
by the population in 1980.

We standardize technology exposure at the phase level to facilitate the comparison of ef-
fect magnitudes across different technological phases and enhance the interpretability of the
coefficients. Thus, the 𝛽 coefficients can be interpreted as the annual change in the outcome
variable 𝑦 for a one-standard-deviation (1-STD) change in exposure to technology 𝐾 during
the phase 𝜏 of the technology life cycle.

Changes in levels of employment and average wage are both calculated as log changes, al-
²²We consider the annualized changes since cycle phases have different lengths. This facilitates comparisons

across cycle phases.
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lowing the coefficients to be interpreted as percentage changes. Changes in the employment-
to-population ratio are computed directly, meaning that the coefficients can be interpreted
as percentage point (pp.) changes.

4.3 Identification and IV strategy

The relationship between investment in automation technology and employment and wage
outcomes is endogenous. First, the decision to invest in automation technologies is influ-
enced by labor costs and availability (Bachmann et al. 2022), including labor market institu-
tional factors (Presidente 2023). Second, some common industry-region level determinants
of automation and labor, such as labor institutions and skills are not directly observable. The
direction of the bias will differ for employment and wages, and will depend on the omitted
variable. For instance, a pool of more skilled workers is likely to favor both adoption and em-
ployment (through productive and sales). Controlling for real consumption (as a proxy for
demand shocks and the business cycle), trade exposure, and country fixed effects partially
but not completely mitigates this issue. Third, measuring automation technologies presents
several challenges. Not all robots included in the IFR data are allocated to sectors. Moreover,
tangible and intangible capital (suchas ICTandsoftware)measurement andaccountingmeth-
ods differ across countries and over time, and is only partially harmonized in the EU-KLEMS
data, which means that the estimates derived from Equation (3) may be downward biased.
The overall direction of the OLS bias, given simultaneity, omitted variables, and measurement
errors, depends on the prevailing source of endogeneity, for different technologies.

Following theprevailing IV strategyused inAcemoglu andRestrepo (2020) andAntón et al.
(2022), we use technological investment data for the U.S., a large country undergoing signifi-
cant automation.²³

We construct the exposure of European regions over a period by measuring the change in
automation technologies in the U.S. (exogenous shift) over the same period, maintaining the
initial employment shares from European regions (share). The instrument is defined as:

𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐾,𝑈𝑆
𝑟,𝜏 = ∑

𝑖∈𝐼
𝑙𝑟𝑖,1980 (𝑇 𝑒𝑐ℎ𝐾,𝑈𝑆

𝑖,𝑡+ℎ −𝑇 𝑒𝑐ℎ𝐾,𝑈𝑆
𝑖,𝑡 ), (4)

where 𝑙𝑟𝑖,1980 is the shareof employmentof sector 𝑖 inEuropean region 𝑟 in 1980, and𝑇 𝑒𝑐ℎ𝐾,𝑈𝑆
𝑖,𝑡

is the level of technology stock 𝐾 per thousand workers in sector 𝑖 in the U.S. for year 𝑡. The
²³Some studies use data fromother European countries (Aghion et al. 2019, Dauth et al. 2021, Bachmann et al.

2022). However, compared to employment trends between EU countries and the U.S., employment trends in
EU countries are more closely correlated due in particular to global value chains and human capital flows. US
investments in automation are less likely to impact European labor markets directly.
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years 𝑡 and 𝑡+ℎ correspond to the start and end of the cycle phase 𝜏 , respectively.
By considering changes in technology in the U.S., we capture shifts in technology that

influence its diffusion in Europe, although exogenous to regional labormarkets in Europe. We
allocate investment proportionally according to the exposure of each region in 1980, based on
its sectoral specialization.

We use the following first-stage specification for each phase 𝜏 :

𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐾
𝑟,𝜏 = 𝛼+𝛽 ×𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐾,𝑈𝑆

𝑟,𝜏 +𝜀𝑟, (5)

where 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐾
𝑟,𝜏 is the baseline exposure to technology 𝐾 in the European region 𝑟 for the

phase 𝜏 , as defined inEquation (1), 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝐾,𝑈𝑆
𝑟,𝜏 is the instrument for thephase, as outlined

in Equation (4), and 𝜀𝑟 is the error term. Tables C.4, C.5, and C.6, in the appendix, present the
first-stage regressions for robots, ICT, and software–databases, respectively.

4.4 Regional Clusters

To investigate how the effects of automation vary across types of regions with different char-
acteristics, we categorize them based on sectoral specialization and labor productivity.

To measure sectoral specialization, we use a k-means algorithm with regional employ-
ment shares in 1980 across three broad sectors—agriculture, industry, and services—as clus-
tering variables.²⁴

Ourpreferred specification identifies threedistinct groups: agriculture-intensive, industry-
intensive, and service-intensive. Figure D.1 shows the geographical distribution of regions
from our cluster analysis. Table B.1 presents the number of regions in each cluster and their
within-cluster averages (centers).

Similarly, we use regional labor productivity in 1980 and classify regions as high or low
productivity based on whether their productivity level is above or below the median for the
entire sample of regions.²⁵ Figure D.2 depicts the distribution of regions by productivity level
relative to the overall sample of regions.

To account for cluster type and productivity level, we interacted technology exposure 𝐾
with slope dummies for cluster and productivity level. We perform separate regressions for
both the cluster and productivity categories, increasing the granularity of our analysis.

²⁴Sectors from NACE Rev. 2 have been grouped as follows: Industry includes major groups B to F and Services
G to U.

²⁵Labor productivity is calculated as the ratio of Gross Value Added (GVA) at constant prices to employment
(in thousands) in 1980 for each region. For Greece and Ireland, where GVA data before 1995 are unavailable, we
use 1995 data for these calculations.
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5 Labor Market Impacts of Different Technology Vintages
In this section, we examine the results of our estimations of the impacts of exposure to digi-
tal automation technology on the labor market during different phases of digital technology
life cycles. We first assess the differences between the effects over the long term (i.e., 1995–
2017) and the short term (i.e., during each phase). We then identify patterns in how digital
automation technologies have affected the employment rate in European regions throughout
the technology life cycles that occurred between 1995 and 2017.

Our findings are based on the IV estimates, which are primarily reported in Tables 2 and
3. These tables present the impact of digital technology exposure on the employment-to-
population ratio and average wage, respectively. We also report several complementary ta-
bles, including the first-stage regressions and heterogeneity analysis by clusters of regions, in
the appendix.²⁶

Table 2: Impact of Digital Technologies on the Employment-to-Population Ratio

IV Reg. - Dep. var.: Annualized Δ Employment-to-population × 100
All Web 1.0 GraphUI - Cloud Big Data - AI

1995-2017 1995-2001 2001-2004 2004-2009 2009-2013 2013-2017
ROB Exposure 0.11∗∗∗ 0.31∗∗∗ 0.01 −0.03 0.01 0.07∗∗

(0.03) (0.07) (0.11) (0.06) (0.04) (0.03)
ICT Exposure 0.05∗∗∗ 0.62∗∗∗ −0.71∗∗∗ −0.01 −0.10∗∗∗ −0.00

(0.02) (0.12) (0.27) (0.05) (0.04) (0.03)
SDB Exposure −0.06∗∗∗ −0.37∗∗∗ 0.38∗∗ −0.00 0.10∗∗∗ 0.00

(0.02) (0.11) (0.19) (0.05) (0.03) (0.03)
R2 0.61 0.64 0.64 0.66 0.92 0.82
Num. obs. 158 158 158 158 158 158
F statistic 13.00 14.92 14.85 16.07 90.92 36.31
Notes: ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses. This table summarizes the estimated coefficients
for the IV regressions where the outcome variable is the annualized change in employment-to-population ratio over the cycle phase.
Each column represents a phase of the digital cycle. The first column is the long-difference estimate for the entire period (1995–2017),
the second and third columns correspond to the two phases of the Web 1.0 cycle, the fourth and fifth columns correspond to the two
phases of the Graphical User Interface and Cloud Computing cycle, and the last column corresponds to the first phase of the Big Data
and AI cycle. Exposure to robots (ROB), information and communication (ICT), and software-database (SDB), are calculated as shift-
share variables and then standardized. Coefficients can be interpreted as the percentage point change in the regional employment-to-
population ratio to a one-standard-deviation increase in exposure to the technology during the cycle phase. Control variables include
the log of the population in 1980, the change in final demand and trade exposure over the cycle phase, and country fixed effects.
Regressions are weighted by the population in 1980.

²⁶Tables C.1, C.2, and C.3 present the estimates from the OLS regressions for the change in employment,
employment-to-population ratio, and average wage. Tables C.4 to C.6 show the results of the first stage. We
observe a strong correlation between investment in the three digital technologies in the European regions and
theU.S.Thecoefficients are always significant, and the F-statistic is high, with the exceptions of the secondphase
of the GUI & Cloud and the second phase of Web 1.0 for software and databases. Table C.7 summarizes the IV es-
timate for the log-change in employment. Tables C.8 to C.13 present the regional cluster coefficients, estimated
separately to highlight the heterogeneity in the relationship between the primary variables.
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Table 3: Impact of Digital Technologies on the Average Wage

IV Reg. - Dep. var.: Annualized Δ Average wage (in log) × 100
All Web 1.0 GraphUI - Cloud Big Data - AI

1995-2017 1995-2001 2001-2004 2004-2009 2009-2013 2013-2017
ROB Exposure 0.00 −0.37 −0.01 −0.23 0.55∗∗∗ 0.40∗∗∗

(0.12) (0.23) (0.23) (0.15) (0.10) (0.08)
ICT Exposure −0.23∗∗∗ −1.43∗∗∗ 0.78 0.06 −0.03 0.26∗∗∗

(0.07) (0.38) (0.58) (0.14) (0.09) (0.09)
SDB Exposure 0.26∗∗∗ 1.09∗∗∗ −0.16 0.14 0.02 0.12

(0.08) (0.34) (0.41) (0.12) (0.08) (0.07)
R2 0.66 0.50 0.82 0.67 0.89 0.65
Num. obs. 158 158 158 158 158 158
F statistic 15.71 8.31 36.29 16.82 68.66 15.02
Notes: ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses. This table summarizes the estimated coefficients
for the IV regressions where the outcome variable is the annualized log-change in average wage over the cycle phase. Each column
represents a phase of the digital cycle. The first column is the long-difference estimate for the entire period (1995–2017), the second
and third columns correspond to the two phases of the Web 1.0 cycle, the fourth and fifth columns correspond to the two phases of
the Graphical User Interface and Cloud Computing cycle, and the last column corresponds to the first phase of the Big Data and AI
cycle. Exposure to robots (ROB), information and communication (ICT), and software-database (SDB), are calculated as shift-share
variables and then standardized. Coefficients can be interpreted as the percentage change in the regional average wage to a one-
standard-deviation increase in exposure to the technology during the cycle phase. Control variables include the log of the population
in 1980, the change in final demand and trade exposure over the cycle phase, and country fixed effects. Regressions are weighted by
the population in 1980.

5.1 Short-term versus Long-term Impacts

Employment. Table 2 shows significant short-term positive and negative (annualized) im-
pactsof all groupsofdigital automation technologieson the regional employment-to-population
ratio for several phases of their technology life cycles. These short-term effects are substan-
tially larger than the effect over the long term. In the case of ICT and SDB, this is because
short-term negative and positive effects cancel out in the long term. In the case of robots, this
is because the positive effects are concentrated in only two phases of the technology life cycle.

For ICT, a 1-STD increase in regional exposure over the period 1995–2017 implies a 0.05
percentage point (pp.) annual increase in the employment-to-population ratio. This trans-
lates into an overall 1.1 pp. increase over the 22 years. This small positive change over the long
term is a combination of negative and positive impacts in different phases of the technology
life cycle. In the first phase of the Web 1.0 technology cycle, a 1-STD increase in regional ex-
posure generates a 0.62 pp. annual increase in the employment-to-population ratio, which is
3.72 pp. over the 6 years of this cycle. This positive impact is almost entirely offset by the 0.71
pp. annual decrease in the second phase of the same cycle (i.e., -2.13 pp. over 3 years) and
the 0.1 pp. decrease during the second phase of the GraphUI-Cloud technology life cycle (i.e.,
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-0.4 pp. over 4 years).
We find similar results for SDB but with the opposite sign. The small annual negative im-

pact on the employment rate (-0.06 pp.) translates into an overall impact of -1.32 pp. over 22
years. However, this result hides a much larger negative impact in the first phase of the Web
1.0 technology life cycle, with a decline of 2.22 pp. over six years, balanced by a positive impact
of the same magnitude during the second phase.

The pattern for robots differs in two main respects. First, in the case of robots, we do not
find that positive and negative impacts cancel out. In fact, robot exposure only shows positive
impacts on the regional employment-to-population ratio. However, the overall positive effect
on the employment-to-population ratio of 0.11 pp. (annualized) for a 1-STD increase in robot
exposure, which corresponds to a 2.42 pp. increase over the entire period, is concentrated
almost entirely in the first phase of the Web 1.0 technology life cycle. During this phase, a
1-STD increase in robot exposure at the regional level brings about an annual change of 0.31
pp. in the employment rate. In the remaining phases, the effect is not statistically significant,
except in the first phase of the Big Data and AI cycle, when it is small.

Averagewage. Turning to the effects onaveragewages,wealsofinddifferent impacts for ICT,
SDB, and robots. In the short term, we find that robots have a significant positive impact on
wages, but only in the last two phases (i.e., 2009–2013 and 2013–2017). These are not enough
to show up in the long-term differences in wages in regions that are more exposed to robots.

For both ICT and SDB, their long-term impacts seem to be driven by the first phase of the
Web 1.0 cycle between 1995 and 2001. A 1-STD increase in regional exposure to ICT leads to
an annual decline in the averagewage of about 0.23 pp., whereas the same increase in regional
exposure to SDB generates a 0.26 pp. increase. We also find a positive effect of ICT in the Big
Data and AI cycle, with a 1-STD increase in regional exposure generating a 0.26 pp. increase
in the average wage.

Heterogeneityacross regions. Westudyhowresults vary fordifferent typesof regions, based
on their historical sectoral specialization and labor productivity (Tables C.8 to C.13). We find
differences between ICT, SDB, and robots.

The positive impact of robots on employment over the long term occurs in all types of
regions, regardless of their structural characteristics. The sign of the effect is similar across
regions also for most phases of the three technology cycles.

Conversely, ICT and SDB show different patterns across different regions. For ICT, the
positive impact on the employment-to-population ratio observed over the long term is driven
by industry-specialized regions. However, these regions do not drive the short-term impacts.
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In the short term, we observe that service-specialized regions experience the most significant
impacts, both economically and statistically. In service-oriented regions, the negative and
positive short-term impacts on the employment rate cancel out in the long term; whereas in
industry-oriented regions, we observe positive impacts in all phases of the three technology
cycles—although only significant in the last cycle. This result confirms the relevance of distin-
guishing between short-term effects and what we observe in the long term.

We observe fewer differences in the impact of ICT on the employment rate between high-
and low-productivity regions. The short-term effects aremore significant in highly productive
regions, where they also do not completely cancel out over the long term.

In sum, highly productive regions relatively more specialized in industry drive the long-
run results, but it is in highly productive regions relatively more specialized in services that
ICT has a significant impact on the employment rate in the short term. The same holds for the
short-term impact on wages.

Concerning SDB, the impact of higher exposure on the employment-to-population ratio
over the long term is similar for regions with different sector specializations. However, this
similarity hides important short-term differences. In the case of agriculture- and industry-
specialized regions, we find no short-term impact on the employment rate. The short-term
average impact is driven by service-specialized regions.

We also find that short-term effects do not completely cancel out in the long term in high-
productivity regions, resulting in a negative long-run impact on the employment rate.

In sum, similarly to ICT, highly productive regions relatively more specialized in services
drive the impacts on employment and wages in the short term.

5.2 The Role of Technology Life Cycles

Our results, as highlighted in Table 2, show that the technology life cycle influences the impact
of automation on the regional employment rate differently for various groups of technologies
(i.e., ICT, SDB, and robots).

We find two opposite patterns for the impact of ICT and SDB on the employment-to-
population ratio. In the case of ICT, a substitution effect dominates in the second phase of the
technology life cycle,when themost exposed regionsexperiencea reduction in theemployment-
to-population ratio. This occurs when the technology is more mature and standardized, firms
have learned to integrate itmore efficiently into the production process, and the routinization
of tasks is better codified. In the first phase, the impact on the employment-to-population ra-
tio is either positive (first technology cycle) or nil (second and third technology cycles).²⁷

²⁷It should be noted that both the first and the third cycles are truncated in our data. It may be that the first
phase of the first cycle starts before what we observe in our data.
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Looking at Tables C.8 andC.13, whichpresent heterogeneous results by type of region (dis-
tinguished by sector specialization and labor productivity), we find that this pattern holds par-
ticularly for high-productivity regions that are relatively more specialized in services. Specif-
ically, these are regions specialized in knowledge-intensive services, primarily densely popu-
lated urban areas, as suggested by Figures D.1 and D.2.

In the case of SDB, a complementary effect dominates in the second phase of the tech-
nology life cycle: the most exposed regions experience an increase in the employment-to-
population ratio. This may be because the adoption of the technology by early adopters leads
to production expansion, thereby increasing demand for workers during the more mature
stagesof the technology life cycle. In thefirst phase, the impacton theemployment-to-population
ratio is either negative (first technology cycle) or nil (second and third technology cycles).

Similarly to ICT, this pattern holds only for regions that are relatively more specialized
in services and are more productive (Tables C.8 and C.13). In low-productivity regions, we
observe a significant impact on the employment rate only in the first phase, which is negative
in the first cycle and positive in the second cycle.

For robots, wedonot findany regularity betweenphases of the three technology life cycles.
The impact on the employment-to-population ratio varies by technological breakthrough. It
is positive in the first and third technology life cycles, but not in the second one. The impact is
positive in the first phase of the first and third technology life cycles;²⁸ whilewe donot observe
any effect in the first phase of the second technology life cycle.

These regularities do not appear when examining the impacts of the three groups of tech-
nologies on the average wage.

6 Conclusion
This paper examines the impact of labor market exposure to several vintages of robots, ICT,
and software and database (SDB) in 163 European regions across 12 countries from 1995 to
2017. We identify new vintages in digital technologies, marked by breakthrough innovations,
anddemonstrate their correlationwithperiods of acceleration anddeceleration in investment
trends. We focus on the short-term impacts of these technologies on labor market outcomes,
specifically the employment-to-population ratio and average wage, during the acceleration
and deceleration phases of the technology life cycles. We use corresponding US investments
as instruments for European investment in these technologies.

Our study finds evidence of significant positive and negative impacts in the short term
during the technology life cycle phases, although the effects of robots, ICT, and SDB on the

²⁸However, for the third life cycle, we do not observe the second phase, and the first phase may be truncated.
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employment-to-population ratio over the long term are small. These small long-term effects
result from short-term effects that offset each other along the technology life cycles. For in-
stance, regions more exposed to ICT investments experience an increase in labor demand
during the early phases, offset by a decline during the mature phases. Conversely, higher SDB
investment reduces labor demand during the early phases and increases it during the mature
phases. When regions are exposed to both ICT and SDB, these effects tend to cancel out even
in the short term.

However, we find that the long-term positive impact of robots on the employment-to-
population ratio is driven by two specific periods: 1995–2001 and 2013–2017. We do not find
negative effects on employment, suggesting that short-termperspectivesmay explain the het-
erogeneous results in the literature on the impact of robots on European employment. The
differences found in prior work may be due to the varying impacts of different robot vintages
on the labor market.

Lastly, we find that regional structural differences, such as labor productivity and employ-
ment specialization, do not influence the impact of robots on labor market outcomes. How-
ever, these differences do affect the impact of ICT and SDB. Specifically, the effects of ICT and
SDBare drivenbyhighly productive regions specialized in services, such as densely populated
urban areas.

The main implication of our study is that policy should address the short-term effects of
automation, which vary among technologies and different phases of their life cycles. While
new job creation is a long-term effect driven by productivity gains and new goods and ser-
vices, short-term policies are needed to support workers adversely affected by automation.
Specifically, policies should mitigate the short-term negative effects on employment seen in
the mature phases of ICT investments and the early phases of SDB investments. Additionally,
it is crucial to address the long-term negative consequences of ICT exposure on wages, which
may increase inequality. Labor market institutions could play an important role in alleviating
these adverse effects, particularly in densely populated urban areas.

Our study has some limitations, suggesting directions for future research. The main limi-
tation is the lack of data on the adoption of specific technologies across countries and regions.
While we consider country-specific differences in exposure to technology, our approach as-
sumes uniform adoption of the same technology vintage across all European regions. Ad-
ditionally, our analysis cannot differentiate between early and late-adopting firms within a
region. These limitations highlight the need for more comprehensive comparative studies
of countries and regions, using comparable firm-level and employee data. Moreover, given
the varying impacts of these technologies on different worker types, a task-based approach
could provide insights into whether different technology life cycles significantly affect work-
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force composition.
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Appendices

A Data

Sector aggregation We consider six sectors as the result of the aggregation and compatibi-
lization betweenNACERev. 1.1 and Rev. 2. Agriculture (A) corresponds to activities that relate
to agriculture, forestry, and fishing. Industry (B-E) refers to manufacturing, mining and quar-
rying, utilities; except Construction (F)which is a sector in itself. Market Services (G-J) encom-
pass service activities such as wholesale and retail trade, accommodation and food service ac-
tivities, transportation and storage, along with information and communication. Financial &
Business Services (K-N) correspond to financial and insurance activities; real estate activities;
professional, scientific, technical, administration and support service activities. Lastly, Non-
Market Services (O-U) regroup all other services such as public administration and defense,
education, human health and social work activities; and any other service activities.

Table A.1 summarizes the aggregation of sectors by providing the corresponding sections
in both revisions of the NACE classification. Table A.2 presents the overview of both revisions
of the NACE classification and the correspondence.

Table A.1: Sectors of economic activities and NACE sections

Sector NACE Rev. 2 NACE Rev. 1.1
A Agriculture A A, B
B-E Industry B, C, D, E C, D, E
F Construction F F
G-J Market Services G, I, H, J G, H, I
K-N Financial Business Services K, L, M, N J, K
O-U Non-Market Services O, P, Q, R, S, T, U L, M, N, O, P, Q
Notes: This table presents the classification of 1-digit NACE industries into sectors used
in the analysis. The classification is derived from the NACE classifications to be com-
patible across the two versions Rev. 1.1 and Rev. 2. Table A.2 summarizes both NACE
classifications in the appendix.
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Table A.2: Overview of NACE classifications

NACE Rev. 2 NACE Rev. 1.1
A Agriculture, forestry and fishing A Agriculture, hunting and forestry

B Fishing
B Mining and quarrying C Mining and quarrying
C Manufacturing D Manufacturing
D Electricity, gas, steam and air conditioning

supply
E Electricity, gas and water supply

E Water supply, sewerage, waste manage-
ment and remediation activities

F Construction F Construction
G Wholesale and retail trade; repair of motor

vehicles and motorcycles
G Wholesale and retail trade: repair of mo-

tor vehicles, motorcycles and personal and
household goods

I Accommodation and food service activities H Hotels and restaurants
H Transportation and storage I Transport, storage and communications
J Information and communication
K Financial and insurance activities J Financial intermediation
L Real estate activities K Real estate, renting and business activities
M Professional, scientific and technical activi-

ties
N Administrative and support service activi-

ties
O Public administration and defence; com-

pulsory social security
L Public administration and defence; com-

pulsory social security
P Education M Education
Q Human health and social work activities N Health and social work
R Arts, entertainment and recreation O Other community, social and personal ser-

vices activities
S Other service activities
T Activities of households as employers;

undifferentiated goods- and services-
producing activities of households for own
use

P Activities of private households as employ-
ers and undifferentiated production activi-
ties of private households

U Activities of extraterritorial organisations
and bodies

Q Extraterritorial organisations and bodies

Notes: This table presents the correspondence between the two revisions (Rev. 2. and Rev. 1.1) of the NACE
classification.
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B Descriptive Statistics

Table B.1 shows the number of regions in each cluster and their centers (within-cluster aver-
ages).

Table B.1: Clusters and K-means

K-means
Cluster N Agriculture Industry Service

1 Industry intensive 72 -0.29 0.85 -0.47
2 Agriculture intensive 47 1.17 -0.47 -0.47
3 Service intensive 44 -0.77 -0.90 1.27

Notes: This table presents the clusters, the number of regions in each group, and their within-cluster
average in clustering variables. N is the number of regions in the cluster. The clustering variables are
expressed in standard deviation. Agriculture, Industry, and Service represent the regional share of em-
ployment in these sectors, which are standardized at the country level.

Table B.2 shows the summary statistics of the change in the outcome variables, in the tech-
nology stock (per thousand workers in 1980), as well as in imports and final demand, over the
whole period of analysis (1995–2017).

Table B.2: Summary Statistics of Long Run Change in Variables (1995–2017)

Variable Mean SD Min Q1 Q2 Q3 Max N
Emp 0.8 0.6 -0.2 0.5 0.8 1.1 2.6 158
Emp-to-pop 0.2 0.1 -0.3 0.1 0.2 0.3 0.6 158
Wage 0.7 0.6 -0.5 0.3 0.6 1.0 2.5 158
ROB 0.0 1.0 -1.2 -0.7 -0.3 0.4 2.9 158
ICT 0.0 1.0 -1.2 -0.8 -0.5 0.8 3.2 158
SDB 0.0 1.0 -1.4 -0.8 -0.3 0.6 3.2 158
Imports 2.0 0.8 0.4 1.4 1.9 2.7 3.9 158
Final demand 5.0 7.2 -8.0 -0.4 5.0 8.0 42.0 158

Notes: This table shows the summary statistics of the change in the outcome, independent, and control variables for the 163
NUTS-2 regions between 1995 and 2017. Outcomes variables are employment, employment-to-population ratio (Emp-to-pop.
ratio)—measured as the total number of employed persons aged 15-64 over the total population—, average yearly wage per
worker (Wage) in thousands euros of 2015—calculated as the ratio between total labor compensation and the level of employ-
ment. All outcome variables are annualized (this is, divided by the number of years in the period). Data are from the ARDECO
database. Independent variables are technology stock (per thousand workers in 1980) in robots (ROB), communication and
information technology (ICT), and software and database (SDB). Data are from the IFR for robots and EU-KLEMS for the rest.
Control variables are imports—measured as imports from China using the OECD Trade in Value Added database—and final
demand—measured as the real consumption index from the Inter-Country Input-Output database.

Tables B.3 and B.4 show the summary statistics for technology stock (per thousand work-
ers in 1980) by, respectively, region specialization and productivity level. Regions are grouped
into three categories for specialization: agriculture-intensive, industry-intensive and service-
intensive regions.
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Table B.3: Summary Statistics for by Region Specialization (change in technology ex-
posure 1995-2017)

Tech Cluster Mean SD Min Q1 Q2 Q3 Max N
ROB Service -0.28 0.83 -1.25 -0.77 -0.52 -0.23 1.87 46

Industry 0.35 1.09 -1.21 -0.37 0.04 0.51 2.87 71
Agriculture -0.29 0.83 -1.23 -0.83 -0.65 -0.06 1.86 41

ICT Service 0.32 1.04 -0.98 -0.58 0.10 1.06 3.24 46
Industry 0.06 1.03 -1.02 -0.76 -0.41 0.81 2.41 71
Agriculture -0.47 0.71 -1.24 -0.86 -0.68 -0.48 1.40 41

SDB Service 0.20 1.09 -1.25 -0.69 -0.12 0.80 3.24 46
Industry 0.01 0.98 -1.29 -0.81 -0.39 0.58 2.20 71
Agriculture -0.24 0.89 -1.35 -0.93 -0.50 0.39 2.20 41

Notes: This table shows the summary statistics of the change in technology exposure in 1995-2017by region specialization. The
variables are technology stock (per thousand workers in 1980) in robots (ROB), communication and information technology
(ICT), and software and database (SDB). Data are from the IFR for robots and EU-KLEMS for the rest. We apply a k-means
clustering taking the regional employment share in 1980 in Agriculture, Industry and Services.

Table B.4: Summary Statistics for by Productivity Level (change in technology expo-
sure 1995-2017)

Tech Productivity Mean SD Min Q1 Q2 Q3 Max N
ROB High 0.15 1.07 -1.19 -0.58 -0.23 0.43 2.87 79

Low -0.15 0.91 -1.25 -0.77 -0.32 0.14 2.56 79
ICT High 0.21 1.06 -1.00 -0.70 -0.10 1.28 3.24 79

Low -0.21 0.89 -1.24 -0.80 -0.57 0.10 2.41 79
SDB High 0.03 1.02 -1.29 -0.77 -0.43 0.59 3.24 79

Low -0.03 0.99 -1.35 -0.87 0.00 0.53 2.52 79
Notes: This table shows the summary statistics of the change in technology exposure in 1995-2017 by producitivity level of the
region. The variables are technology stock (per thousand workers in 1980) in robots (ROB), communication and information
technology (ICT), and software and database (SDB). Data are from the IFR for robots and EU-KLEMS for the rest. We estimate
labor productivity in 1980 by calculating the ratio between Gross Value Added (GVA) at constant prices and employment (in
thousands) for each region. We categorize regions into the high (low) productivity group when their productivity level is above
(below) the median (considering the entire sample of regions).

C Regressions

C.1 OLS Regressions
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Table C.1: Impact of Automation Technologies on Employment (OLS Estimate)

OLS Reg. - Dep. var.: Annualized Δ Employment (in log) × 100
All Web 1.0 GraphUI - Cloud Big Data - AI

1995-2017 1995-2001 2001-2004 2004-2009 2009-2013 2013-2017
ROB Exposure 0.20∗∗∗ 0.14 −0.44∗∗∗ 0.01 0.13∗ −0.04

(0.06) (0.12) (0.11) (0.05) (0.07) (0.07)
ICT Exposure 0.07 −0.05 −0.54∗∗∗ 0.20∗∗∗ −0.34∗∗∗ −0.00

(0.05) (0.11) (0.12) (0.05) (0.13) (0.07)
SDB Exposure 0.03 −0.06 0.08 0.07 −0.26∗∗∗ −0.17∗∗

(0.06) (0.12) (0.11) (0.04) (0.10) (0.08)
R2 0.31 0.20 0.35 0.17 0.73 0.28
Num. obs. 158 158 158 158 158 158
F statistic 13.71 7.69 16.17 6.35 83.99 12.03
Notes: ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses. This table summarizes the estimated coefficients
for the OLS regressions where the outcome variable is the annualized log-change in employment over the cycle phase. Each column
represents a phase of the digital cycle. The first column is the long-difference estimate for the entire period (1995–2017), the second
and third columns correspond to the two phases of theWeb 1.0 cycle, the fourth and fifth columns correspond to the two phases of the
Graphical User Interface and Cloud Computing cycle, and the last column corresponds to the first phase of the Big Data and AI cycle.
Exposure to robots (ROB), informationandcommunication (ICT), and software-database (SDB), are calculatedas shift-share variables
and then standardized. Coefficients can be interpreted as the percentage change in regional employment to a one-standard-deviation
increase in exposure to the technology during the cycle phase. Control variables include the log of the population in 1980, the change
in final demand and trade exposure over the cycle phase, and country fixed effects. Regressions are weighted by the population in
1980.
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Table C.2: Impact of Automation Technologies on the Employment-to-Population Ratio
(OLS Estimate)

OLS Reg. - Dep. var.: Annualized Δ Employment-to-population × 100
All Web 1.0 GraphUI - Cloud Big Data - AI

1995-2017 1995-2001 2001-2004 2004-2009 2009-2013 2013-2017
ROB Exposure 0.08∗∗∗ 0.14∗∗∗ −0.16∗∗∗ −0.02 0.16∗∗∗ −0.12∗∗∗

(0.02) (0.04) (0.05) (0.03) (0.02) (0.03)
ICT Exposure 0.02∗ 0.01 −0.15∗∗∗ 0.09∗∗∗ −0.27∗∗∗ −0.02

(0.01) (0.04) (0.05) (0.03) (0.05) (0.03)
SDB Exposure −0.01 0.04 −0.08∗ 0.01 −0.16∗∗∗ −0.12∗∗∗

(0.02) (0.04) (0.04) (0.02) (0.03) (0.03)
R2 0.35 0.22 0.18 0.29 0.85 0.46
Num. obs. 158 158 158 158 158 158
F statistic 16.68 8.80 6.87 12.20 167.24 26.08
Notes: ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses. This table summarizes the estimated coefficients for
the OLS regressions where the outcome variable is the annualized change in employment-to-population ratio over the cycle phase.
Each column represents a phase of the digital cycle. The first column is the long-difference estimate for the entire period (1995–2017),
the second and third columns correspond to the two phases of the Web 1.0 cycle, the fourth and fifth columns correspond to the two
phases of the Graphical User Interface and Cloud Computing cycle, and the last column corresponds to the first phase of the Big Data
and AI cycle. Exposure to robots (ROB), information and communication (ICT), and software-database (SDB), are calculated as shift-
share variables and then standardized. Coefficients can be interpreted as the percentage point change in the regional employment-to-
population ratio to a one-standard-deviation increase in exposure to the technology during the cycle phase. Control variables include
the log of the population in 1980, the change in final demand and trade exposure over the cycle phase, and country fixed effects.
Regressions are weighted by the population in 1980.
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Table C.3: Impact of Automation Technologies on the Average Wage (OLS Estimate)

OLS Reg. - Dep. var.: Annualized Δ Average wage (in log) × 100
All Web 1.0 GraphUI - Cloud Big Data - AI

1995-2017 1995-2001 2001-2004 2004-2009 2009-2013 2013-2017
ROB Exposure −0.18∗∗ −0.63∗∗∗ −0.63∗∗∗ −0.18∗∗ −0.07 0.51∗∗∗

(0.07) (0.12) (0.11) (0.07) (0.07) (0.06)
ICT Exposure 0.21∗∗∗ 0.30∗∗∗ 0.72∗∗∗ 0.22∗∗∗ 0.32∗∗ −0.18∗∗∗

(0.05) (0.11) (0.12) (0.06) (0.14) (0.06)
SDB Exposure 0.06 −0.23∗ −0.04 0.12∗∗ −0.23∗∗ 0.28∗∗∗

(0.07) (0.12) (0.10) (0.06) (0.10) (0.07)
R2 0.24 0.23 0.51 0.37 0.70 0.38
Num. obs. 158 158 158 158 158 158
F statistic 9.84 8.95 31.30 17.59 69.46 18.99
Notes: ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses. This table summarizes the estimated coefficients
for the OLS regressions where the outcome variable is the annualized log-change in average wage over the cycle phase. Each column
represents a phase of the digital cycle. The first column is the long-difference estimate for the entire period (1995–2017), the second
and third columns correspond to the two phases of the Web 1.0 cycle, the fourth and fifth columns correspond to the two phases of
the Graphical User Interface and Cloud Computing cycle, and the last column corresponds to the first phase of the Big Data and AI
cycle. Exposure to robots (ROB), information and communication (ICT), and software-database (SDB), are calculated as shift-share
variables and then standardized. Coefficients can be interpreted as the percentage change in the regional average wage to a one-
standard-deviation increase in exposure to the technology during the cycle phase. Control variables include the log of the population
in 1980, the change in final demand and trade exposure over the cycle phase, and country fixed effects. Regressions are weighted by
the population in 1980.
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C.2 First Stage IV Regressions

Table C.4: First-Stage IV Regression (Robots)

First Stage IV Regression – Dep. var.: ROB Exposure
All Web 1.0 GraphUI - Cloud Big Data - AI

1995-2017 1995-2001 2001-2004 2004-2009 2009-2013 2013-2017
Intercept −1.30∗∗∗ −0.49∗∗∗ −0.21∗∗∗ −0.12∗∗∗ −0.25∗∗∗ −0.22∗∗

(0.31) (0.09) (0.04) (0.04) (0.09) (0.09)
ROB Exposure (US) 1.71∗∗∗ 3.15∗∗∗ 2.12∗∗∗ 1.32∗∗∗ 1.12∗∗∗ 1.16∗∗∗

(0.13) (0.20) (0.14) (0.09) (0.22) (0.13)
R2 0.52 0.62 0.58 0.58 0.15 0.33
Num. obs. 158 158 158 158 158 158
F statistic 165.70 252.96 217.69 215.50 27.05 75.34
Notes: ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors betweenparentheses. This table summarizes the estimated coefficients for thefirst
stage of the IV regressions for robots (ROB). The dependent variables represent the robot exposure of European regions in shift-share. Robot
Exposure (US) is the instrument variable also constructed as a shift-share with the change in US stock per thousand workers. Each column
represents a phase of the digital cycle. The first column is the long-difference estimate for the entire period (1995–2017), the second and
third columns correspond to the two phases of the Web 1.0 cycle, the fourth and fifth columns correspond to the two phases of the Graphical
User Interface and Cloud Computing cycle, and the last column corresponds to the first phase of the Big Data and AI cycle. Regressions are
weighted by the population in 1980.

Table C.5: First-Stage IV Regression (ICT)

First Stage IV Regression – Dep. var.: ICT Exposure
All Web 1.0 GraphUI - Cloud Big Data - AI

1995-2017 1995-2001 2001-2004 2004-2009 2009-2013 2013-2017
Intercept −0.25 0.23∗ 0.03 0.04 −0.21 −0.22∗∗

(0.27) (0.12) (0.03) (0.11) (0.16) (0.10)
ICT Exposure (US) 0.21∗∗∗ 0.29∗∗∗ 0.19∗∗∗ 0.20∗∗∗ 0.15∗∗ 0.18∗∗∗

(0.03) (0.08) (0.04) (0.06) (0.07) (0.04)
R2 0.24 0.07 0.11 0.08 0.03 0.14
Num. obs. 158 158 158 158 158 158
F statistic 49.57 12.04 18.59 13.20 4.52 25.51
Notes: ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses. This table summarizes the estimated coefficients for the
first stage of the IV regressions for information and communication technology (ICT). The dependent variables represent the ICT exposure
of European regions in shift-share. ICT Exposure (US) is the instrument variable also constructed as a shift-share with the change in US
stock per thousand workers. Each column represents a phase of the digital cycle. The first column is the long-difference estimate for the
entire period (1995–2017), the second and third columns correspond to the two phases of the Web 1.0 cycle, the fourth and fifth columns
correspond to the twophases of theGraphicalUser Interface andCloudComputing cycle, and the last columncorresponds to the first phase
of the Big Data and AI cycle. Regressions are weighted by the population in 1980.
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Table C.6: First-Stage IV Regression (Software & Database)

First Stage IV Regression – Dep. var.: SDB Exposure
All Web 1.0 GraphUI - Cloud Big Data - AI

1995-2017 1995-2001 2001-2004 2004-2009 2009-2013 2013-2017
Intercept −0.39 0.01 0.23∗∗∗ −0.24∗ −0.23∗ −0.16

(0.45) (0.14) (0.04) (0.12) (0.14) (0.11)
SDB Exposure (US) 0.55∗∗∗ 0.55∗∗∗ 0.23∗∗∗ 0.67∗∗∗ 0.48∗∗∗ 0.60∗∗∗

(0.07) (0.10) (0.08) (0.09) (0.10) (0.07)
R2 0.28 0.17 0.05 0.25 0.13 0.29
Num. obs. 158 158 158 158 158 158
F statistic 59.46 32.57 8.27 51.74 24.33 64.75
Notes: ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses. This table summarizes the estimated coefficients for the
first stage of the IV regressions for software and database (SDB).The dependent variables represent the SDB exposure of European regions in
shift-share. SDBExposure (US) is the instrument variable also constructed as a shift-sharewith the change inUS stock per thousandworkers.
Each column represents a phase of the digital cycle. The first column is the long-difference estimate for the entire period (1995–2017), the
second and third columns correspond to the two phases of the Web 1.0 cycle, the fourth and fifth columns correspond to the two phases of
the Graphical User Interface and Cloud Computing cycle, and the last column corresponds to the first phase of the Big Data and AI cycle.
Regressions are weighted by the population in 1980.

C.3 Second Stage IV Regressions

Table C.7: Impact of Automation Technologies on Employment

IV Reg. - Dep. var.: Annualized Δ Employment (in log) × 100
All Web 1.0 GraphUI - Cloud Big Data - AI

1995-2017 1995-2001 2001-2004 2004-2009 2009-2013 2013-2017
ROB Exposure 0.66∗∗∗ 0.59∗∗∗ 0.34 0.26∗ 0.17 0.10

(0.11) (0.18) (0.23) (0.15) (0.11) (0.08)
ICT Exposure 0.34∗∗∗ 1.60∗∗∗ −1.65∗∗∗ 0.36∗∗∗ 0.07 0.11

(0.06) (0.29) (0.57) (0.13) (0.09) (0.08)
SDB Exposure −0.30∗∗∗ −0.89∗∗∗ 0.78∗ −0.16 0.27∗∗∗ 0.09

(0.07) (0.26) (0.40) (0.12) (0.08) (0.07)
R2 0.69 0.70 0.78 0.34 0.89 0.73
Num. obs. 158 158 158 158 158 158
F statistic 18.25 19.01 29.30 4.21 64.41 22.17
Notes: ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses. This table summarizes the estimated coefficients
for the IV regressions where the outcome variable is the annualized log-change in employment over the cycle phase. Each column
represents a phase of the digital cycle. The first column is the long-difference estimate for the entire period (1995–2017), the second
and third columns correspond to the two phases of theWeb 1.0 cycle, the fourth and fifth columns correspond to the two phases of the
Graphical User Interface and Cloud Computing cycle, and the last column corresponds to the first phase of the Big Data and AI cycle.
Exposure to robots (ROB), informationandcommunication (ICT), and software-database (SDB), are calculatedas shift-share variables
and then standardized. Coefficients can be interpreted as the percentage change in regional employment to a one-standard-deviation
increase in exposure to the technology during the cycle phase. Control variables include the log of the population in 1980, the change
in final demand and trade exposure over the cycle phase, and country fixed effects. Regressions are weighted by the population in
1980.

37



C.4 Regional Cluster IV Regressions by Specialization

Table C.8: Impact of Automation Technologies on Employment by Specialization (Second
Stage)

IV Reg. - Dep. var.: Annualized Δ Emp. (in log) × 100
All Web 1.0 GraphUI - Cloud Big Data - AI

1995-2017 1995-2001 2001-2004 2004-2009 2009-2013 2013-2017
ROB Exp. × Service 0.54∗∗∗ 0.62∗∗ −0.09 0.13 0.04 0.16

(0.16) (0.29) (0.25) (0.22) (0.14) (0.14)
ROB Exp. × Industry 0.58∗∗∗ 0.60∗∗∗ −0.11 0.21 0.21 0.12

(0.12) (0.23) (0.23) (0.16) (0.13) (0.12)
ROB Exp. × Agriculture 0.60∗∗∗ −0.21 −0.59 0.33 0.30 0.35∗∗

(0.15) (0.35) (0.37) (0.24) (0.18) (0.15)
ICT Exp. × Service 0.11 1.34∗∗∗ −2.58∗∗∗ 0.05 −0.27∗∗ 0.03

(0.09) (0.35) (0.59) (0.18) (0.11) (0.11)
ICT Exp. × Industry 0.45∗∗∗ 1.09∗∗ 0.75 0.29 0.36∗∗ 0.25∗

(0.12) (0.50) (0.74) (0.24) (0.16) (0.15)
ICT Exp. × Agriculture 0.32 −0.70 2.59∗∗ −0.34 −0.31 −0.22

(0.27) (1.00) (1.17) (0.46) (0.32) (0.29)
SDB Exp. × Service −0.22∗∗∗ −1.04∗∗∗ 1.85∗∗∗ 0.01 0.29∗∗∗ 0.10

(0.08) (0.29) (0.44) (0.14) (0.09) (0.08)
SDB Exp. × Industry −0.39∗∗∗ −0.72 −1.05∗ −0.30 0.02 0.07

(0.14) (0.51) (0.60) (0.22) (0.16) (0.16)
SDB Exp. × Agriculture −0.17 1.61∗ −2.74∗∗ 0.53 0.61∗∗ 0.38

(0.26) (0.91) (1.11) (0.45) (0.28) (0.25)
R2 0.72 0.74 0.84 0.40 0.91 0.75
Num. obs. 158 158 158 158 158 158
F statistic 13.62 15.06 28.53 3.59 50.72 15.61
Notes: ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses. This table summarizes the estimated coefficients
for the Regional Cluster IV regressions where the outcome variable is the annualized log-change in employment over the cycle phase.
Each column represents a phase of the digital cycle. The first column is the long-difference estimate for the entire period (1995–2017),
the second and third columns correspond to the two phases of the Web 1.0 cycle, the fourth and fifth columns correspond to the
two phases of the Graphical User Interface and Cloud Computing cycle, and the last column corresponds to the first phase of the Big
Data and AI cycle. Exposure to robots (ROB), information and communication (ICT), and software-database (SDB), are calculated
as shift-share variables and then standardized. Coefficients can be interpreted as the percentage change in regional employment
to a one-standard-deviation increase in exposure to the technology during the cycle phase. Control variables include the log of the
population in 1980, the change in final demand and trade exposure over the cycle phase, and country fixed effects. Regressions are
weighted by the population in 1980.
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Table C.9: Impact of Automation Technologies on the Employment-to-Population Ratio
by Specialization (Second Stage)

IV Reg. - Dep. var.: Annualized Δ Emp-to-pop. × 100
All Web 1.0 GraphUI - Cloud Big Data - AI

1995-2017 1995-2001 2001-2004 2004-2009 2009-2013 2013-2017
ROB Exp. × Service 0.11∗∗ 0.43∗∗∗ −0.13 −0.04 −0.00 0.13∗∗

(0.05) (0.12) (0.12) (0.09) (0.06) (0.05)
ROB Exp. × Industry 0.12∗∗∗ 0.32∗∗∗ −0.16 0.02 −0.00 0.07

(0.04) (0.09) (0.11) (0.07) (0.05) (0.04)
ROB Exp. × Agriculture 0.10∗∗ 0.02 −0.41∗∗ 0.04 0.01 0.15∗∗∗

(0.05) (0.14) (0.18) (0.10) (0.08) (0.05)
ICT Exp. × Service −0.01 0.64∗∗∗ −1.02∗∗∗ −0.08 −0.20∗∗∗ −0.01

(0.03) (0.14) (0.28) (0.08) (0.05) (0.04)
ICT Exp. × Industry 0.08∗∗ 0.30 0.46 −0.09 0.02 0.14∗∗

(0.04) (0.20) (0.36) (0.10) (0.07) (0.05)
ICT Exp. × Agriculture 0.05 −0.19 1.44∗∗ −0.13 −0.04 −0.08

(0.08) (0.40) (0.57) (0.19) (0.13) (0.10)
SDB Exp. × Service −0.04∗ −0.51∗∗∗ 0.78∗∗∗ 0.02 0.11∗∗∗ 0.04

(0.02) (0.12) (0.21) (0.06) (0.03) (0.03)
SDB Exp. × Industry −0.08∗ −0.20 −0.43 −0.01 0.07 −0.07

(0.04) (0.21) (0.29) (0.09) (0.06) (0.06)
SDB Exp. × Agriculture −0.04 0.43 −1.43∗∗∗ −0.02 0.05 0.06

(0.08) (0.37) (0.54) (0.19) (0.12) (0.09)
R2 0.65 0.70 0.74 0.69 0.93 0.84
Num. obs. 158 158 158 158 158 158
F statistic 9.94 12.09 14.93 11.57 66.99 27.79
Notes: ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses. This table summarizes the estimated coefficients
for the IV regressions where the outcome variable is the annualized change in employment-to-population ratio over the cycle phase.
Each column represents a phase of the digital cycle. The first column is the long-difference estimate for the entire period (1995–2017),
the second and third columns correspond to the two phases of the Web 1.0 cycle, the fourth and fifth columns correspond to the two
phases of the Graphical User Interface and Cloud Computing cycle, and the last column corresponds to the first phase of the Big Data
and AI cycle. Exposure to robots (ROB), information and communication (ICT), and software-database (SDB), are calculated as shift-
share variables and then standardized. Coefficients can be interpreted as the percentage point change in the regional employment-to-
population ratio to a one-standard-deviation increase in exposure to the technology during the cycle phase. Control variables include
the log of the population in 1980, the change in final demand and trade exposure over the cycle phase, and country fixed effects.
Regressions are weighted by the population in 1980.
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Table C.10: Impact of Automation Technologies on the Average Wage by Specialization
(Second Stage)

IV Reg. - Dep. var.: Annualized Δ Avg. wage (in log) × 100
All Web 1.0 GraphUI - Cloud Big Data - AI

1995-2017 1995-2001 2001-2004 2004-2009 2009-2013 2013-2017
ROB Exp. × Service 0.31∗ 0.14 0.45 0.22 0.40∗∗∗ 0.43∗∗∗

(0.18) (0.40) (0.28) (0.23) (0.14) (0.15)
ROB Exp. × Industry 0.13 0.01 0.16 −0.21 0.67∗∗∗ 0.46∗∗∗

(0.14) (0.31) (0.26) (0.17) (0.13) (0.12)
ROB Exp. × Agriculture 0.19 0.17 0.52 −0.05 0.69∗∗∗ 0.54∗∗∗

(0.17) (0.48) (0.42) (0.25) (0.18) (0.16)
ICT Exp. × Service −0.08 −1.21∗∗ 1.66∗∗ 0.15 0.12 0.18∗

(0.11) (0.48) (0.66) (0.19) (0.11) (0.11)
ICT Exp. × Industry −0.26∗ −0.59 −0.29 0.10 −0.46∗∗∗ 0.40∗∗

(0.14) (0.69) (0.83) (0.25) (0.16) (0.15)
ICT Exp. × Agriculture −0.07 −0.45 −1.15 1.06∗∗ 0.15 0.20

(0.31) (1.37) (1.33) (0.49) (0.31) (0.30)
SDB Exp. × Service 0.19∗∗ 1.10∗∗∗ −1.04∗∗ 0.09 −0.04 0.13

(0.09) (0.40) (0.50) (0.15) (0.08) (0.08)
SDB Exp. × Industry 0.29∗ 0.65 0.90 0.09 0.20 −0.04

(0.16) (0.70) (0.67) (0.23) (0.15) (0.17)
SDB Exp. × Agriculture −0.02 −0.10 1.42 −0.80∗ 0.03 0.10

(0.30) (1.24) (1.26) (0.48) (0.27) (0.26)
R2 0.68 0.54 0.84 0.70 0.91 0.66
Num. obs. 158 158 158 158 158 158
F statistic 11.41 6.11 27.92 12.41 53.25 10.18
Notes: ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses. This table summarizes the estimated coefficients
for the IV regressions where the outcome variable is the annualized log-change in average wage over the cycle phase. Each column
represents a phase of the digital cycle. The first column is the long-difference estimate for the entire period (1995–2017), the second
and third columns correspond to the two phases of the Web 1.0 cycle, the fourth and fifth columns correspond to the two phases of
the Graphical User Interface and Cloud Computing cycle, and the last column corresponds to the first phase of the Big Data and AI
cycle. Exposure to robots (ROB), information and communication (ICT), and software-database (SDB), are calculated as shift-share
variables and then standardized. Coefficients can be interpreted as the percentage change in the regional average wage to a one-
standard-deviation increase in exposure to the technology during the cycle phase. Control variables include the log of the population
in 1980, the change in final demand and trade exposure over the cycle phase, and country fixed effects. Regressions are weighted by
the population in 1980.
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C.5 Regional Cluster IV Regressions by Productivity

Table C.11: Impact of Automation Technologies on Employment by Productivity

IV Reg. - Dep. var.: Annualized Δ Emp. (in log) × 100
All Web 1.0 GraphUI - Cloud Big Data - AI

1995-2017 1995-2001 2001-2004 2004-2009 2009-2013 2013-2017
ROB Exp. × High Prod. 0.57∗∗∗ 0.52∗∗ 0.11 0.15 −0.00 0.04

(0.12) (0.20) (0.23) (0.16) (0.13) (0.10)
ROB Exp. × Low Prod. 0.64∗∗∗ 0.65∗∗ −0.17 0.33∗∗ 0.17 0.23∗∗

(0.13) (0.25) (0.26) (0.17) (0.13) (0.11)
ICT Exp. × High Prod. 0.28∗∗∗ 1.18∗∗∗ −2.18∗∗∗ 0.36∗∗ −0.12 −0.00

(0.10) (0.39) (0.58) (0.17) (0.12) (0.11)
ICT Exp. × Low Prod. 0.41∗∗∗ 1.86∗∗∗ −0.35 −0.01 0.18 0.30∗∗

(0.12) (0.51) (0.82) (0.23) (0.16) (0.13)
SDB Exp. × High Prod. −0.33∗∗∗ −0.33 0.95∗∗ −0.38∗∗ 0.26∗∗ 0.13

(0.12) (0.38) (0.47) (0.18) (0.13) (0.12)
SDB Exp. × Low Prod. −0.33∗∗∗ −1.24∗∗∗ −0.31 0.18 0.20∗ −0.02

(0.10) (0.46) (0.65) (0.18) (0.11) (0.10)
R2 0.70 0.71 0.81 0.41 0.89 0.74
Num. obs. 158 158 158 158 158 158
F statistic 14.93 15.86 27.91 4.44 55.02 18.77
Notes: ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses. This table summarizes the estimated coefficients
for the Regional Cluster IV regressions where the outcome variable is the annualized log-change in employment over the cycle phase.
Each column represents a phase of the digital cycle. The first column is the long-difference estimate for the entire period (1995–2017),
the second and third columns correspond to the two phases of the Web 1.0 cycle, the fourth and fifth columns correspond to the
two phases of the Graphical User Interface and Cloud Computing cycle, and the last column corresponds to the first phase of the Big
Data and AI cycle. Exposure to robots (ROB), information and communication (ICT), and software-database (SDB), are calculated
as shift-share variables and then standardized. Coefficients can be interpreted as the percentage change in regional employment
to a one-standard-deviation increase in exposure to the technology during the cycle phase. Control variables include the log of the
population in 1980, the change in final demand and trade exposure over the cycle phase, and country fixed effects. Regressions are
weighted by the population in 1980.
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Table C.12: Impact of Automation Technologies on the Employment-to-Population Ratio
by Productivity (Second Stage)

IV Reg. - Dep. var.: Annualized Δ Emp-to-pop. × 100
All Web 1.0 GraphUI - Cloud Big Data - AI

1995-2017 1995-2001 2001-2004 2004-2009 2009-2013 2013-2017
ROB Exp. × High Prod. 0.09∗∗ 0.28∗∗∗ −0.13 −0.02 −0.03 0.04

(0.04) (0.08) (0.11) (0.06) (0.05) (0.04)
ROB Exp. × Low Prod. 0.12∗∗∗ 0.36∗∗∗ −0.15 0.01 −0.00 0.10∗∗

(0.04) (0.10) (0.13) (0.07) (0.05) (0.04)
ICT Exp. × High Prod. 0.05∗ 0.41∗∗∗ −0.85∗∗∗ 0.09 −0.15∗∗∗ 0.05

(0.03) (0.15) (0.28) (0.07) (0.05) (0.04)
ICT Exp. × Low Prod. 0.00 0.48∗∗ −0.59 −0.33∗∗∗ −0.02 −0.04

(0.04) (0.20) (0.39) (0.09) (0.07) (0.05)
SDB Exp. × High Prod. −0.08∗∗ −0.06 0.27 −0.17∗∗ 0.09∗ −0.08∗

(0.04) (0.15) (0.23) (0.07) (0.05) (0.04)
SDB Exp. × Low Prod. −0.02 −0.35∗∗ 0.29 0.26∗∗∗ 0.06 0.05

(0.03) (0.18) (0.31) (0.07) (0.05) (0.04)
R2 0.63 0.69 0.69 0.71 0.92 0.84
Num. obs. 158 158 158 158 158 158
F statistic 11.12 14.31 14.39 15.84 74.95 33.32
Notes: ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses. This table summarizes the estimated coefficients
for the IV regressions where the outcome variable is the annualized change in employment-to-population ratio over the cycle phase.
Each column represents a phase of the digital cycle. The first column is the long-difference estimate for the entire period (1995–2017),
the second and third columns correspond to the two phases of the Web 1.0 cycle, the fourth and fifth columns correspond to the two
phases of the Graphical User Interface and Cloud Computing cycle, and the last column corresponds to the first phase of the Big Data
and AI cycle. Exposure to robots (ROB), information and communication (ICT), and software-database (SDB), are calculated as shift-
share variables and then standardized. Coefficients can be interpreted as the percentage point change in the regional employment-
to-population ratio to a one-standard-deviation increase in exposure to the technology during the cycle phase. Control variables
include the log of the population in 1980, the change in final demand and trade exposure over the cycle phase, and country fixed
effects. Regressions are weighted by the population in 1980.
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TableC.13: Impact ofAutomationTechnologies on theAverageWagebyProductivity (Sec-
ond Stage)

IV Reg. - Dep. var.: Annualized Δ Avg. wage (in log) × 100
All Web 1.0 GraphUI - Cloud Big Data - AI

1995-2017 1995-2001 2001-2004 2004-2009 2009-2013 2013-2017
ROB Exp. × High Prod. 0.16 −0.23 0.39 −0.21 0.58∗∗∗ 0.40∗∗∗

(0.13) (0.26) (0.24) (0.16) (0.12) (0.11)
ROB Exp. × Low Prod. 0.10 −0.07 0.36 −0.37∗∗ 0.54∗∗∗ 0.49∗∗∗

(0.14) (0.32) (0.27) (0.17) (0.12) (0.11)
ICT Exp. × High Prod. −0.20∗ −1.34∗∗∗ 1.48∗∗ −0.08 0.02 0.15

(0.11) (0.51) (0.59) (0.18) (0.12) (0.11)
ICT Exp. × Low Prod. −0.13 −0.58 0.23 0.29 −0.20 0.29∗∗

(0.13) (0.66) (0.84) (0.24) (0.16) (0.14)
SDB Exp. × High Prod. 0.39∗∗∗ 1.06∗∗ −0.39 0.51∗∗∗ 0.05 0.25∗∗

(0.13) (0.49) (0.49) (0.19) (0.13) (0.12)
SDB Exp. × Low Prod. 0.17 0.43 0.21 −0.14 0.09 0.06

(0.11) (0.59) (0.67) (0.19) (0.11) (0.10)
R2 0.68 0.53 0.84 0.70 0.89 0.66
Num. obs. 158 158 158 158 158 158
F statistic 13.61 7.32 34.46 15.10 55.04 12.45
Notes: ∗∗∗𝑝 < 0.01; ∗∗𝑝 < 0.05; ∗𝑝 < 0.1. Standard errors between parentheses. This table summarizes the estimated coefficients
for the IV regressions where the outcome variable is the annualized log-change in average wage over the cycle phase. Each column
represents a phase of the digital cycle. The first column is the long-difference estimate for the entire period (1995–2017), the second
and third columns correspond to the two phases of the Web 1.0 cycle, the fourth and fifth columns correspond to the two phases of
the Graphical User Interface and Cloud Computing cycle, and the last column corresponds to the first phase of the Big Data and AI
cycle. Exposure to robots (ROB), information and communication (ICT), and software-database (SDB), are calculated as shift-share
variables and then standardized. Coefficients can be interpreted as the percentage change in the regional average wage to a one-
standard-deviation increase in exposure to the technology during the cycle phase. Control variables include the log of the population
in 1980, the change in final demand and trade exposure over the cycle phase, and country fixed effects. Regressions are weighted by
the population in 1980.
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D Additional Figures

Figure D.1 shows the geographical distribution of regions according to our clustering strategy.

Figure D.1: Clusters of Regions According to Specialization

Notes: Thisfigure presents the geographical distribution of the clusters. We compute the clusters by using aK-means algorithm. Thevariables
employed for the clustering are the shares of employment in agriculture, industry, and services in 1980. We standardize the variables at the
country level. The data on employment comes from the ARDECO database.

Figure D.2 shows the geographical distribution of regions according to their labor produc-
tivity level in 1980. Regions are categorized as ‘High (Low)-productivity’ if their productivity
is above (below) the median of the entire sample of regions.
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Figure D.2: Clusters of Regions According to Productivity

Notes: This figure presents the divide of regions according to their productivity level in 1980. We compute the clusters by using a K-means
algorithm. The variables employed for the clustering are the shares of employment in agriculture, industry, and services in 1980. We stan-
dardize the variables at the country level. Labor productivity is estimated as the ratio between GVA at constant prices and employment (in
thousands) in 1980 for each region. For Greece and Ireland, there is no information on GVA prior to 1995, therefore we have used this year
for the computation in these two cases.

D.1 Technology Stocks

Figure D.3 presents the technology stocks (per thousand workers in 1980) from 1995 to 2017,
expressed as an index, for robots, communication technology, information technology, and
software anddatabases. Thefirst rowofpanels displays the raw time series, which is increasing
for all technologies. The second row of panels depicts the detrended variables, accounting for
long-term patterns in technology investment. Lastly, the third row of panels further adjusts
for the level of final demand, which could influence investment dynamics. Consequently, this
row illustrates the investment in each technology, net of long-term trends and final demand
dynamics.
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Figure D.3: Technology Stocks per Thousand Workers in 1980

Notes: This figure shows the evolution of the technology stock per thousand workers in 1980 aggregated at the European level (this is, aggre-
gated for the 12 European countries in the sample). Panel ‘Raw’ refers to the series in levels, panel ‘Untrended’ displays the residuals after
regressing the Raw series on a liner time trend, andpanel ‘Untrended + Final demandnet’ shows the residuals after regressing the ‘Raw’ series
on a liner time trend and on the real consumption (to account for business cycles). TLC stands for technology life cycles.
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Figure D.4: Evolution of Robot Stock in First Difference (3-Year Moving Average)

Notes: Thisfigure depicts the evolutionof thefirst difference robot stockper thousandworkers at the EU level (aggregated for the 12European
countries in the sample). The series is smoothed by taking the 3-year moving average.
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Table E.1: Major Technological Developments during the Web 1.0 Cycle (1990–2004)

Computational power 1980s Personal computers
1993 Intel Pentium microprocessor (Intel)

Network communication 1990 HTML (Tim Berners Lee, CERN)
1993 MOSAIC (Eric Bina, Marc Andreesen; University of Illinois)

2000s Diffusion of internet and digital infraestructure
Software 1990 Windows 3.0 (Microsoft)

1991 LINUX (Linus Torvalds)
1990s Diffusion of World Wide Web (WWW)

Notes: Own elaboration based on Freeman and Louçã (2001), Mowery and Simcoe (2002), and Table 4 from Nuvolari (2020).

E Technological Cycles: Summarizing Major Developments

In this section, we summarize the major technological developments of digital automation
technologies by technology cycles.

E.1 Web 1.0

Table E.1 outlines major technological developments during the Web 1.0 cycle (1990–2004).
Advancements in mainframes and microcomputers began in the 1960s and 1970s. However,
only with the reduction in price and size of microprocessors did personal computers become
available for use in administrative tasks and smaller firms (Malerba et al. 1999, Freeman and
Louçã 2001).²⁹ Concurrently, newer and more user-friendly operating systems like Windows
3.0 in 1990, Linux in 1991, and Windows 95 facilitated widespread adoption.

In contrast to previous decades when the Internet was confined to researchers and en-
gineers, the number of Internet hosts significantly increased in the late 1990s (Mowery and
Simcoe 2002). This surge was facilitated by firms adopting computer hardware, the develop-
ment of the HTTP protocol and HTML language, and the introduction of browsers designed
for reading HTML documents (Mowery and Simcoe 2002). HTML and HTTP, introduced in
the 1990s, enabled multimedia content in web pages and cross-referencing sources, allowing
quick access to numerousmultimedia pages. This gave rise to theWWW in 1991. TheMOSAIC
andNetscapebrowsers, introduced in 1993 and1995 respectively, simplifiedand standardized
online document visualization.

By 2002, over 50% of firms with 10 or more employees were utilizing the Internet (Pilat
2005). The percentage varies by country, with Japan and the Scandinavian countries lead-
ing adoption, with almost all firms using the Internet. The dramatic diffusion of the Internet

²⁹In the U.S., private fixed investment in IT grew by around 98% between 1970 and 1999 (Mowery and Simcoe
2002).
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Table E.2: Major Technological Developments during the Graphical User
Interface and Cloud Computing Cycle (2004–2013)

Web 2.0 2004 Flickr API
2006 Facebook and Twitter API
2008 AppStore
2012 Google Play

Cloud Computing 2006 Elastic Compute Cloud Commercial Services (EC2)
2010 Microsoft Azure

Notes: Own elaboration based on Lane (2019).

changed retail dynamics and gave rise to online commerce (Mowery and Simcoe 2002). Major
online retail companies like Amazon and eBay started operating in 1995. By 2001, a significant
percentage of companies in Europe were using the Internet for sales or purchases (Mowery
and Simcoe 2002).

The adoption of ICT triggered significant changes to firms’ organizational structures, af-
fecting business organization, communication with customers and suppliers, and work prac-
tices. ICT replaced various easily codified andprogrammedactivitieswhile creating new tasks.
Qualitative firm-level research provides evidence of these changes. For example, Autor et al.
(2002) offer a case study of a U.S. bank adopting check imaging and OCR software. The tech-
nology automated check reading and made electronic checks available to all workers, leading
to the reorganization of certain activities and more specialized employment. Before digital-
ization in 1994, check exception examination involved around 650 clerks, with one worker
overseeing the entire process per check. After adopting OCR software, checks became acces-
sible electronically to multiple workers simultaneously, resulting in specialized tasks related
to processing overdrafts, implementing stop payment orders, and verifying signatures (Autor
et al. 2002).

E.2 Graphical User Interface and Cloud Computing

Table E.2 outlines the major technological developments during the Graphical User Interface
andCloudComputing Cycle (2004–2013) Gradually, developments in the internet led to a new
phase known as ‘Web 2.0’. While there is no precise definition of Web 2.0, it encompasses vari-
ous dimensions, including technological aspects like AJAX, RIA, and XML/DHTML; principles
such as participation, collective intelligence, and a rich user experience; and applications and
tools like Wikipedia, Flickr, and Mashups (Kim et al. 2009). This phase is characterized by the
perception of the Internet as a collaborative platform where users actively contribute to the
development and improvement of applications. Social media platforms developed APIs, be-
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coming primary channels for connecting individuals (Lane 2019), facilitating the creation of
new applications and services seamlessly integrated with social media. In 2007, Apple initi-
ated the ‘App Revolution’ by launching its software development kit for third parties, allowing
developers to create apps for the iPhone. The Apple App Store launched in 2008, followed by
Google Play in 2012 (Crook 2018).

Anothernotable featureof thisphase is the increasingdata intensityof applications,where
improvement is related to thenumberofusers (O’Reilly 2007). Companies leveragevast amounts
of data from social media to tailor advertising based on consumer preferences. Data analytics
has shifted from structured data to unstructured data using natural processing methods (Lee
2017). Cloud computing became more widespread in the 2000s, with Amazon introducing its
Elastic Compute Cloud (EC2) service for businesses in 2006. Private clouds became available
in 2008, and in 2010, Microsoft and other companies launched more accessible, user-friendly,
and affordable cloud computing services (Foote 2021).

According to Eurostat, by 2021 around 40%of EU enterprises were using cloud computing
services, with varying intensity across countries. Over 60% of enterprises in Sweden, Finland,
the Netherlands, and Denmark use cloud computing. For detailed figures, see the EUROSTAT
website.

Increasing investment in cloud computing services suggests a negative associationwith IT
capital and software investment. Firms’ fixed capital in IT tends to decrease, while cloud ser-
vices enable thegrowthof start-upsandsmall andmedium-sizedfirms (BloomandPierri 2018,
DeStefano et al. 2023). This outcome appears driven by the lower costs of cloud services com-
pared to thehighfixed costs of ICT investments, which represent a substantial entry barrier for
new firms (Etro 2009). The creation of more smaller firms has positive consequences for em-
ployment. Since small and medium-sized firms tend to be associated with high employment
growth, their emergence enabled by cloud computing services positively affects employment
(Etro 2009, Bloom and Pierri 2018).

E.3 Big Data and Artificial Intelligence

Table E.3 presents the major advances in the ongoing Big Data & Artificial Intelligence cycle.
The spread of IoT technology, enabling physical objects equipped with sensors to communi-
cate and share data with computing systems through wired or wireless networks without hu-
man mediation, is revolutionizing data collection, sharing, and transfer (Lee 2017). Technolo-
gies such as Wireless Sensor Networks (WSN), Radio-frequency identification (RFID), Blue-
tooth, Near-field communication (NFC), and Long Term Evolution (LTE) connect objects to
the Internet and each other, facilitating data exchange (Khanna andKaur 2020). The IoT, along
with social media, is becoming a major source of data generation, including images, videos,
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Table E.3: Major Technological Developments during the Big Data & Artificial Intelligence Cy-
cle (2013–)

Internet of Things 2013 IoT becomes more widespread due to hardware platforms
2016 IoT products widely available in the market

Big Data & Data analytics 2013 Hadoop 2.0, Apache Spark, Apache Storm, Apache Samza
2014 Apache Flink
2015 Apache Apex
2016 Zettabyte Era

Artificial Intelligence (ML & DL) 2014 VVGNet, GAN, and GoogleNet
2015 ResNet
2016 DenseNet
2017 WGAN

Notes: Own elaboration based on Barnett (2016), Gupta and Rani (2019), Khanna and Kaur (2020), and Cao et al. (2018).

andaudio (Lee 2017). This technology is pervasive across various sectors, including aerospace,
defense, agroindustry, precision agriculture, automotives, pharmaceuticals, consumer goods,
chemicals, and ICT (Andreoni et al. 2021). For a comprehensive review of IoT uses in different
sectors, see Andreoni et al. (2021).

Based on thewidespread internet penetration from the previous period, big data and data
analytics have surged significantly. For instance, Gupta and Rani (2019) shows that research
publications related to big data in 2017 increased 126-fold compared to 2011. This coincided
with the creation of several big data processing platforms, widely available since 2013 through
Apache (Gupta and Rani 2019). The Apache Software Foundation (ASF), a non-profit organi-
zation, provides open-source software. According to Gupta and Rani (2019), Apache Spark is
one of the most popular systems for large-scale data processing, outperforming Hadoop by
using in-memory processing rather than a file system (IBMCloudEducation 2021). Other plat-
forms released in this period, like Apache Storm and Apache Samza, are used for real-time an-
alytics, cybersecurity, threat detection, and performance monitoring (Gupta and Rani 2019).
Theseplatformsweredevelopedby socialmedia companies, suchasBackType (ApacheStorm)
and LinkedIn (Apache Samza). The compound annual growth of social media analytics is pro-
jected to be 27.6% between 2015 and 2020 (Lee 2017).

AI is gaining increasing attention as a subset of computer science designed to train ma-
chines to perform cognitive activities associated with human intelligence, such as learning,
problem-solving, and interaction (Brynjolfsson and McAfee 2014, Baruffaldi et al. 2020). The
major components of AI are machine learning and deep learning, which rely on neural net-
work techniques.

AI’s ability to perform various functions has led to its application in several industries
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(Cockburn et al. 2018) for tasks such as visual and speech recognition, predictive analysis, ma-
chine translation, information extraction, and system management/control (Vannuccini and
Prytkova 2023, Calvino et al. 2022).

The main distinction between machine learning and information and communication
technology (ICT) lies in that while computerization codifies pre-existing knowledge related
to repetitive activities, machine learning enables machines to learn from examples to achieve
specific outputs (Brynjolfsson and Mcafee 2017). This process involves supervised learning
systems,wheremachinespredictparticular resultsbasedon inputs from largedatabases. Progress
in machine learning is closely tied to big data and the development of new algorithmic tech-
niques, highlighting the interdependence between these technologies. These techniques en-
hance predictive power using backpropagation with multiple layers and vast datasets (Cock-
burn et al. 2018). Examples of AI applications include medical diagnoses, where machines
now achieve higher accuracy than humans, and legal activities, where computers scan and
process extensive legal documents for trials (Frey andOsborne 2017). These examples demon-
strate AI’s capability to handle cognitive non-routine activities.

Overall, AI adoption among firms remains relatively low. Between 2016 and 2018, only
3.2% of firms in the U.S. were using or testing AI (Acemoglu et al. 2022). Additionally, research
shows that adoption is more prevalent among larger and older firms (Zolas et al. 2021, Ace-
moglu et al. 2022).
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